Skip to main content
Log in

Synthesis and characterization of (Al, Co) co-doped ZnO for electronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Synthesis of three different ratios of Alx=0.05, 0.10, 0.15 Cox=0.05, 0.10, 0.15ZnOx=0.95, 0.90, 0.85 powders were prepared using sol gel route. Structural and electronic properties of the synthesized material were investigated using X-ray diffraction and scanning electron microscope, vibrating sample magnetometer (VSM), ultraviolet (UV) spectroscopy and dielectric studies. Characterization results reveal that the particle size is of the range 4.84 nm to the maximum size of 19.86 nm with a morphological structures representing rounded and honeycomb shapes at different doping ratios. VSM results of the prepared samples reveal the ferromagnetic nature with the hysteresis curve representation. The optical band gap has been calculated as 3.1–3.8 nm from the UV spectroscopy results. Conductivity of the samples was calculated from dielectric constant and conductivity increases with increasing doping ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Yousefi, Effects of Sn atoms on formation of ZnO nanorings. Cryst. Eng. Comm. 17, 2698 (2015)

    Article  Google Scholar 

  2. S. Dusari, J. Barzola-Qaiquia, P. Esquinazi, Changes in the electrical transport of ZnO under visible light. Solid State Commun. 150, 22–26 (2010)

    Article  Google Scholar 

  3. O.D. Jayakumar, I.K. Gopalakrishnan, S.K. Kulshreshtha, Magnetization study of Fe doped ZnO co-doped with Cu: synthesised by wet chemical method. J. Mater. Sci. 41, 4706–4712 (2006)

    Article  Google Scholar 

  4. T. Zhang, L.X. Song, H.W. Zhang, Origin of ferromagnetism of (Co, Al) codopedZnO from first principle calculations. App. Phys. Lett. 89, 172502 (2006)

    Article  Google Scholar 

  5. D. Iusan, R. Knit, B. Sanyal, O. Eriksson, Electronic structure and chemical and magnetic interactions in ZnO doped with Co and Al: experiments and ab initio density-functional calculations. Phys. Rev. B 78, 085319 (2008)

    Article  Google Scholar 

  6. O.D. Jayakumar, S.N. Achary, C. Sudakar, A.K. Tyagi, Experimental and Theoritical investigation on magnetic behaviour of (Al, Co) co-doped ZnO nanoparticles. Nanoscale 2, 1505–1511 (2010)

    Article  Google Scholar 

  7. C.S. Chang, E.Z. Kurmaev, A. Dinia, Co and Al co-doping for ferromagnetism in ZnO: co diluted magnetic semiconductors. J. Phys. Cond. Matter 21, 056002 (2009)

    Article  Google Scholar 

  8. M. Sharma, R.M. Mehra, Effect of thickness on structural, electrical, optical and magnetic properties of Co and Al doped ZnO films deposited by sol–gel route, App. Surf. Sci. 255, 2527–2532 (2008)

    Article  Google Scholar 

  9. X.C. Liu, E.W. Shi, L.X. Song, High temperature ferromagnetism in (Co, Al) codoped ZnO powders. App. Phys. Lett. 88, 252503 (2006)

    Article  Google Scholar 

  10. H.E. Unalan, Y. Zhang, P. Hiralal, G.A.J. Amaratunga, Zinc oxide nanowire networks for macroelectronic devices. App. Phys. Lett. 94, 163501 (2009)

    Article  Google Scholar 

  11. H.E. Unalan, Y. Yang, Y. Zhang, P. Hiralal, G. Amaratunga, ZnO nanowire and WS2 nanotube electronics. IEEE Trans. Electron. Device 55, 2988–3000 (2008)

    Article  Google Scholar 

  12. Flora M. Li, Gen-Wen Hsieh, William I. Milne, Zinc oxide nanostructires and high electron mobility nanocomposite thin film transistors. IEEE Trans Electron. Device 55, 3001–3011 (2008)

    Article  Google Scholar 

  13. E. Lee, D.I. Moon, Y.K. Choi, Transparent zinc oxide gate metal oxide-semiconductor field effect transistor for high responsivity photodetector. IEEE Electron. Device Lett. 30, 493–495 (2009)

    Article  Google Scholar 

  14. J.L. Wang, P.Y. Yang, M.H. Juang, pH sensing characteristics of Hydrothermal Al–doped ZnO nanostructures, J. Nano. Mat. 2013, 1–7 (2013)

    Google Scholar 

  15. Jiang T., Zhou X. and Luo T., A zinc oxide modified porous silicon humidity sensor, Proceeding of the IEEE International Conference on Information Acquisition, (2006)

  16. C.S. Prajapati, P.P. Sahay, Influence in doping on the structural, optical and acetone sensing properties of ZnO nanoparticulate thin films. Mat. Sci. Semicond. Process. 16, 200–210 (2012)

    Article  Google Scholar 

  17. E.S.P. Leong, M.K. Ching, S.F. Yu, Sol–Gel ZnO–SiO2 composite waveguide Ultravoilet Lasers. IEEE Photon. Technol. Lett. 16, 2418–2420 (2004)

    Article  Google Scholar 

  18. S. Kim, H. Moon, D. Gupta, Y.K. Choi, Resistive switching characteristics of Sol–Gel zinc oxide films for flexible memory applications. IEEE Trans. Elect. Device 56, 696–699 (2009)

    Article  Google Scholar 

  19. C.L. Liao, Y.F. Chang, M.C. Wu, High speed GaN based blue light emitting diodes with gallium DOPED ZnO current spreading layer. IEEE Elect. Dev. Lett. 34, 611–613 (2013)

    Article  Google Scholar 

  20. B. Ling, J.L. Zhao, Z.L. Dong, Electroluminance from ferromagnetic Fe doped ZnONnorod arrays on P- Si. IEEE Trans. Electron. Device 57, 1948–1951 (2010)

    Article  Google Scholar 

  21. Y. Nam, I. Hwang, B.H. Park, Switchable schotty diode characteristics induced by electroforming process in Mn doped ZnO thin films. App. Phys. Lett. 102, 162105 (2013)

    Article  Google Scholar 

  22. H. Emrah Unalan, P.H. Hiralal, M. Chhowalla, Flexible organic photovoltaics from Zinc oxide nanowires grown on transparent and conducting single walled carbon nanotube thin films. J. Mater. Chem. 18, 5909–5912 (2008)

    Article  Google Scholar 

  23. L. Zhifang, C. Guangyu, L. Liwei, Development of aluminiumdoped ZnO films for a Si:h/µc-Si: H solar cell applications. J. Semicond. 34, 063004 (2013)

    Article  Google Scholar 

  24. X. Zhang, X. Huang, H. Jiang, Dye-Sensitized solar cell with energy strorage function through PVDF-ZnO nanocomposite counter electrode. Adv. Mater. 25, 4093–4096 (2013)

    Article  Google Scholar 

  25. A. Kharatzadeh, F. Jamali-Sheini, R. Yousefi, Excellent photocatalytic performance of Zn(1−x)MgxO/rGO nanocomposites under natural sunlight irradiation and their photovoltaic and UV detector applications. Mater. Design 107, 47–55 (2016)

    Article  Google Scholar 

  26. R.F. Dezfulya, R. Yousefib, F. Jamali-Sheini, Photocurrent applications of Zn(1_x)CdxO/rGO nanocomposites. Ceram. Int. 42, 7455–7461 (2016)

    Article  Google Scholar 

  27. A. Sa´aedi, R. Yousefi, F. Jamali-Sheini, A.K. Zak, M. Cheraghizade, M.R. Mahmoudian, M.A. Baghchesara, A.S. Dezaki, XPS studies and photocurrent applications of alkali-metals-doped ZnO nanoparticles under visible illumination conditions. Physica E 79, 113–118 (2016)

    Article  Google Scholar 

  28. D. Sridevi, K.V. Rajendran, Synthesis and optical characteristics of ZnO nanocrystals. Bull. Mater. Sci. 32, 165–168 (2002)

    Article  Google Scholar 

  29. Dharma J, Pisal A., Simple method of measuring the band gap energy value TiO2 in powder form using a UV/Vis/NIR spectrometer, Application Note, PerkinElmer Inc

  30. M. Elahi, D. Souri, Study of optical absorption and optical band gap determination of thin amorphous TeO2–V2O5–MoO3 blown films. J. Pure Appl. Phys. 44, 468–472 (2006)

    Google Scholar 

  31. K. Omar, M.D.J. Ooi, M.M. Hassin, Investigation on dielectric constant of Zinc oxide. Mod. Appl. Sci. 3, 110 (2009)

    Google Scholar 

  32. S. Shah, D. Singh, V. Shrinet, Dielectric properties and surface morphology of proton irritated ferric oxalate dispersed PVC films. J. Pure Appl. Phys. 46, 439–442 (2008)

    Google Scholar 

  33. A. Roy, A. Parveen, A. Koppalkar, Microscopic and dielectric studies of ZnO nanoparticles loaded in ortho-chloropolyanilinenanocomposites. J. Nanopart. Res. 15, 3–11 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Management of Saveetha University for the continuous motivation to carry out the research work and for extending all necessary support. We would also like to extend our regards to Sophisticated Analytical Instruments Facility (SAIF), IIT Madras and Indira Gandhi Centre for Atomic Research (IGCAR) for carrying out the material characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ravindiran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravindiran, M., Shankar, P. Synthesis and characterization of (Al, Co) co-doped ZnO for electronic applications. J Mater Sci: Mater Electron 28, 4229–4238 (2017). https://doi.org/10.1007/s10854-016-6045-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6045-5

Keywords

Navigation