Skip to main content
Log in

Structural, dielectric and magnetic properties of (Al, Ni) co-doped ZnO nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A highly valuable co-precipitation technique was used for the preparation of ZnO, Zn0.98Al0.02O and Zn0.96Al0.02Ni0.02O semiconductor nanoparticles. X-ray diffraction and scanning electron microscopy measurements reveal that the samples are nano-columns with a hexagonal wurtzite crystal structure. A significant enhancement in dielectric constant resulted from the substitution of (Al, Ni) co-doped ZnO lattice while an opposite trend was observed for dielectric loss. With the substitution of both Al and Ni, the electrical conductivity was found to be increased in comparison with that of ZnO nanoparticles due to the increase of available charge carriers after replacement of Zn ions by Ni ions. The magnetic property measurements revealed well room-temperature ferromagnetism, RTFM (Diluted magnetic semiconductor behavior) for the Ni co-doped samples in comparison with that of single Al–ZnO. The origin of high ferromagnetic may arise from the metallic Ni and intrinsic property of the doped ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001)

    Article  Google Scholar 

  2. Y.Q. Chang, D.B. Wang, X.H. Luo, X.Y. Xu, X.H. Chen, L. Li, C.P. Chen, R.M. Wang, J. Xu, D.P. Yu, Synthesis, optical, and magnetic properties of diluted magnetic semiconductor Zn1−xMnxO nanowires via vapor phase growth. Appl. Phys. Lett. 83, 4020–4022 (2003)

    Article  Google Scholar 

  3. Y. Ohno, D.K. Young, B. Beshoten, F. Matsukura, H. Ohno, D.I. Awschalom, Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999)

    Article  Google Scholar 

  4. Q. Wang, Q. Sun, P. Jena, Ab initio study of electronic and magnetic properties of the C-codoped Ga1−xMnxN (10ī0) surface. Phys. Rev. B. 75, 035322 (2007)

    Article  Google Scholar 

  5. C. Klingshirn, Optical properties of bound and localized excitons and of defect states. Phys. Status Solidi B 71, 547–556 (1975)

    Article  Google Scholar 

  6. A.F. Fert, Origin, development, and future of spintronics (Nobel Lecture). Angew. Chem. Int. 47, 5956–5967 (2008)

    Article  Google Scholar 

  7. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in Zinc-Blend magnetic semiconductors. Science 287, 10191022 (2000)

    Article  Google Scholar 

  8. X.Y. Xu, C.B. Cao, Structure and ferromagnetic properties of co-doped ZnO powders. J. Magn. Magn. Mater. 321, 2216–2219 (2009)

    Article  Google Scholar 

  9. T. Dietl, A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965974 (2010)

    Article  Google Scholar 

  10. K. Sato, H.K. Yoshida, Material design for transparent ferromagnets with ZnO-based magnetic semiconductors. Jpn. J. Appl. Phys. 39, L555 (2000)

    Article  Google Scholar 

  11. G. Li, L. Qiang, Z. Qing-Xun, G.J. Xin, Z. Yang, J.L. Tao, G. Bo, L.B. Ting, First principles study of the optical properties of ZnO doped with Al, N. Acta Phys. Sin. 58, 5624–5631 (2009)

    Google Scholar 

  12. Z. Jin, L. Qiao, C. Guo, Z. He, L. Liu, M. Rong, First-priniciple study of electrical and optical properties of (Al, Sn) co-doped ZnO. Optik—Int. J. Light Electron Opt. 127, 1988–1992 (2016)

    Article  Google Scholar 

  13. Y. Lin, D. Jiang, L. Fan, W. Shi, X. Ma, Fe-doped ZnO magnetic semiconductor by mechanical alloying. J. Alloy. Compd. 436, 30–33 (2007)

    Article  Google Scholar 

  14. C.J. Cong, J.H. Hong, Q.Y. Liu, L. Liao, K.L. Zhang, Synthesis, structure and ferromagnetic properties of Ni-doped ZnO nanoparticles. Solid State Commun. 138, 511–515 (2006)

    Article  Google Scholar 

  15. Yu. Mingpeng, H. Qiu, X. Chen, H. Liu, M. Wang, Structural and physical properties of Ni and Al co-doped ZnO films grown on glass by direct current magnetron co-sputtering. Phys. B 404, 1829–1834 (2009)

    Article  Google Scholar 

  16. G. Goncalves, A. Pimentel, E. Fortunato, R. Martins, E.L. Queiroz, R.F. Bianchi, R.M. Faria, UV and ozone influence on the conductivity of ZnO thin films. J. Non Cryst. Solids 352, 1444–1447 (2006)

    Article  Google Scholar 

  17. A.S. Fawzi, A.D. Sheikh, V.L. Mathe, Structural, dielectric properties and ac conductivity of Ni(1−x)ZnxFe2O4 spinel ferrites. J. Alloys Compd. 502, 231–237 (2010)

    Article  Google Scholar 

  18. C.A. Barbosa, J.M. Henriques, E.L. Albuquerque, V.N. Freire, Thermal effect on the dielectric function and small polaron hopping conduction in inorganic molecular crystals. Phys. Lett. A 372, 3725–3728 (2008)

    Article  Google Scholar 

  19. N. Chandel, N. Mehta, A. Kumar, Investigation of ac conductivity measurements in a-Se80Te20 and a-Se80Te10M10 (M = Cd, In, Sb) alloys using correlated barrier hopping model. Curr. Appl. Phys. 12, 405–412 (2012)

    Article  Google Scholar 

  20. D.A. Molodov, P.J. Konijnenberg, Grain boundary and grain structure control through application of a high magnetic field. Scr. Mater. 54, 977–981 (2006)

    Article  Google Scholar 

  21. R. Zamiri, B. Singh, M.S. Belsleyc, J.M.F. Ferreiraa, Structural and dielectric properties of Al-doped ZnO nanostructures. Ceram. Int. 40, 6031–6036 (2014)

    Article  Google Scholar 

  22. A. Verma, F. Khan, D. Kumar, M. Kar, B. Chakravarty, S. Singh, M. Husain, Sol–gel derived aluminum doped zinc oxide for application as anti-reflection coating interrestrial silicon solar cells. Thin Solid Films 518, 2649–2653 (2010)

    Article  Google Scholar 

  23. R. Khan, S. Zulfiqar, M.U.Rahman Fashu, Effects of Ni codoping concentrations on dielectric and magnetic properties of (Co, Ni) co-doped SnO2 nanoparticles. J. Mater. Sci.: Mater. Electron. (2016). doi:10.1007/s10854-016-4759-z

    Google Scholar 

  24. R. Khan, S. Zulfiqar, Y.Zaman Fashu, Magnetic and dielectric properties of (Co, Zn) co-doped SnO2 diluted magnetic semiconducting nanoparticles. J. Mater. Sci.: Mater. Electron. (2016). doi:10.1007/s10854-016-4517-2

    Google Scholar 

  25. R. Khan, M.U. Zulfiqar, S.Fashu Rahman, Effect of annealing temperature on the dielectric and magnetic response of (Co, Zn) co-doped SnO2 nanoparticles. J. Mater. Sci.: Mater. Electron. (2016). doi:10.1007/s10854-016-5844-z

    Google Scholar 

  26. R. Khan, Y. Zulfiqar, Zaman, Effect of annealing on structural, dielectric, transport and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles. J. Mater. Sci.: Mater. Electron. 27, 4003–4010 (2016). doi:10.1007/s10854-015-4254-y

    Google Scholar 

  27. R. Khan, F.M. Hu, Dielectric and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles. Chin. Phys. B 24(12), 127803 (2015)

    Article  Google Scholar 

  28. X.S. Fang, C.H. Ye, L.D. Zhang, T. Xie, Twinning mediated growth of Al2O3 nanobelts and their enhanced dielectric responses. Adv. Mater. 17, 1661–1665 (2005)

    Article  Google Scholar 

  29. J.G. Han, Z.Y. Zhu, S. Ray, A.K. Azad, W.L. Zhang, M.X. He, S.H. Li, Y.P. Zhao, Optical and dielectric properties of ZnO tetrapod structures at terahertz frequencies. Appl. Phys. Lett. 89, 031107 (2006)

    Article  Google Scholar 

  30. F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Yuan, Photoluminescence properties of SnO2 nanoparticles synthesized by sol–gel method. J. Phys. Chem. B 108, 8119–8123 (2004)

    Article  Google Scholar 

  31. J.C. Maxwell, Electric and Magnetism (Oxford University Press, NewYork, 1973), p. 828

    Google Scholar 

  32. I.H. Gul, A.Z. Abbasi, F. Amin, M.A. Rehman, A. Maqsood, J. Magn. Magn. Mater. 311, 494 (2007)

    Article  Google Scholar 

  33. C. León, A. Rivera, A. Várez, J. Sanz, J. Santamaria, K.L. Ngai, Origin of constant loss in ionic conductors. Phys. Rev. Lett. 86, 1279–1282 (2001)

    Article  Google Scholar 

  34. P.S. Sz, Y.C. Lin, AC impedance studies of copper doped silica glass. Phys. Chem. Mater. 82, 295–300 (2003)

    Article  Google Scholar 

  35. O. Pakma, N. Serin, T. Serin, S. Altindal, Influence of frequency and bias voltage on dielectric properties and electrical conductivity of Al/TiO2/p-Si/p + (MOS) structures. J. Phys. D Appl. Phys. 4, 215103 (2008)

    Article  Google Scholar 

  36. C.H. Ho, C.D. Liu, C.H. Hsieh, K.H. Hsieh, S.N. Lee, High dielectric constant polyaniline/poly(acrylic acid) composites prepared by in situ polymerization. Synth. Met. 158, 630–637 (2008)

    Article  Google Scholar 

  37. R. Cusc, E. Alarcn-Llad, J. Ibez, L. Arts, J. Jimnez, B. Wang, M.J. Callahan, Native point defects in ZnO. Phys. Rev. B. 75, 165202 (2009)

    Article  Google Scholar 

  38. C.J. Cong, L. Liao, Q.Y. Liu, J.C. Li, K.L. Zhang, Effects of temperature on the ferromagnetism of Mn-doped ZnO nanoparticles and Mn-related Raman vibration. Nanotechnology 17, 1520–1526 (2006)

    Article  Google Scholar 

  39. L.W. Yang, X.L. Wu, G.S. Huang, T. Qiu, Y.M. Yang, In situ synthesis of Mn-doped ZnO multi leg nanostructures and Mn-related Raman vibration. J. Appl. Phys. 97, 014308 (2005)

    Article  Google Scholar 

  40. R.B.H. Tahar, N.B.H. Tahar, Mechanism of carrier transport in aluminum-doped zinc oxide. J. Appl. Phys. 92, 4498–4501 (2002)

    Article  Google Scholar 

  41. R. Elilarassi, G. Chandrasekaran, Synthesis and characterization of ball milled Fe-doped ZnO diluted magnetic semiconductor. Optoelectron. Lett. 8, 109–112 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Departments of Physics and Material Science Zhejiang University for materials provision and characterization of samples. Finally, special thanks to the Chinese Government Scholarship for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajwali Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R., Fashu, S. & Zia-Ur-Rehman Structural, dielectric and magnetic properties of (Al, Ni) co-doped ZnO nanoparticles. J Mater Sci: Mater Electron 28, 4333–4339 (2017). https://doi.org/10.1007/s10854-016-6058-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6058-0

Keywords

Navigation