Skip to main content
Log in

Creep behavior of Sn–Bi solder alloys at elevated temperatures studied by nanoindentation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The creep mechanisms of eutectic Sn–Bi alloy were evaluated with indentation constant strain rate (CSR) method at elevated temperatures. The activation energy (Q) and creep stress exponent (n) of eutectic Sn–Bi alloy and other alloy compositions were measured in the temperature range from 25 to 100 °C. Prior to this, the indentation CSR testing protocol for evaluation of Q and n was validated through evaluating the pure Sn (grain size >100 µm) at various temperatures. The creep mechanism of large grain-sized Sn was found to be dislocation climb controlled by core diffusion in bulk. Dislocation climb though core diffusion and power-law breakdown were suggested to be the deformation mechanism for pure Bi and Sn–3%Bi alloy, respectively. For the two-phased eutectic Sn–Bi alloy, the creep mechanism was found to be strain rate and temperature dependent. Individual constituent phases were found to take turns to dominate the creep rate at different strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.H. Raeder, D. Mitlin, R.W. Messler Jr., Modelling the creep rates of eutectic Bi–Sn solder using the data from its constitutive phases. J. Mater. Sci. 33, 4503–4508 (1998)

    Article  Google Scholar 

  2. C.H. Raeder, G.D. Schmeelk, D. Mitlin, T. Barbieri, W. Yang, L.F. Felton, R.W. Messler, D.B. Knorr, D. Lee, Isothermal Creep of Eutectic SnBi and SnAg Solder and Solder Joints, in Sixteenth IEEE/CPMT International Electronics Manufacturing Technology Symposium (1994), pp. 1–6

  3. M.D. Mathew, H. Yang, S. Movva, K.L. Murty, Creep deformation characteristics of tin and tin-based electronic solder alloys. Metall. Mater. Trans. A 36A, 99–105 (2005)

    Article  Google Scholar 

  4. J.L.F. Goldstein, J.W. Morris, Microstructural development of eutectic Bi–Sn and eutectic In–Sn during high-temperature deformation. J. Electron. Mater. 23, 477–486 (1994)

    Article  Google Scholar 

  5. Z. Mei, J.W. Morris Jr., Characterization of eutectic Sn–Bi solder joints. J. Electron. Mater. 21, 599–607 (1992)

    Article  Google Scholar 

  6. D. Mitlin, C.H. Raeder, R.W. Messler Jr., Solid solution creep behavior of Sn–xBi alloys. Metall. Mater. Trans. A 30A, 115–122 (1999)

    Article  Google Scholar 

  7. X.Q. Shi, Z.P. Wang, Q.J. Yang, H.L.J. Pang, Creep behavior and deformation mechanism map of Sn–Pb eutectic solder alloy. J. Eng. Mater. Technol. Trans. ASME 125, 81–88 (2003)

    Article  Google Scholar 

  8. M.M. El-Bahay, M.E. El Mossalamy, M. Mahdy, A.A. Bahgat, Some mechanical properties of Sn–3.5 Ag eutectic alloy at different temperatures. J. Mater. Sci.: Mater. Electron. 15, 519–526 (2004)

    Google Scholar 

  9. V.M.F. Marques, B. Wunderle, C. Johnston, P.S. Grant, Nanomechanical characterization of Sn–Ag–Cu/Cu joints—part 2: nanoindentation creep and its relationship with uniaxial creep as a function of temperature. Acta Mater. 61, 2471–2480 (2013)

    Article  Google Scholar 

  10. H.L. Reynolds, Creep of two-phase microstructure for microelectronic applications (Department of Materials Science and Mineral Engineering, University of California, Berkeley, 1998), p. 98

    Book  Google Scholar 

  11. J.W. Morris Jr., J.L.F. Goldstein, Z. Mei, Microstructure and mechanical-properties of Sn–In and Sn–Bi solders. JOM 45, 25–27 (1993)

    Article  Google Scholar 

  12. T. Reinikainen, J. Kivilahti, Deformation behavior of dilute SnBi(O.5 to 6 At. Pct) solid solutions. Metall. Mater. Trans. A 30, 123–132 (1999)

    Article  Google Scholar 

  13. L. Shen, W.C.D. Cheong, Y.L. Foo, Z. Cheng, Nanoindentation creep of tin and aluminium: a comparative study between constant load and constant strain rate methods. Mater. Sci. Eng. A 532, 505–510 (2012)

    Article  Google Scholar 

  14. L. Shen, P. Lu, S. Wang, Z. Chen, Creep behaviour of eutectic SnBi alloy and its constituent phases using nanoindentation technique. J. Alloys Compd. 574, 98–103 (2013)

    Article  Google Scholar 

  15. L. Shen, P. Septiwerdani, Z. Chen, Elastic modulus, hardness and creep performance of SnBi alloys using nanoindentation. Mater. Sci. Eng. A 558, 253–258 (2012)

    Article  Google Scholar 

  16. L. Shen, Z.Y. Tan, Z. Chen, Nanoindentation study on the creep resistance of SnBi solder alloy with reactive nano-metallic fillers. Mater. Sci. Eng. A 561, 232–238 (2013)

    Article  Google Scholar 

  17. J. Dean, A. Bradbury, G. Aldrich-Smith, T.W. Clyne, A procedure for extracting primary and secondary creep parameters from nanoindentation data. Mech. Mater. 65, 124–134 (2013)

    Article  Google Scholar 

  18. B.N. Lucas, W.C. Oliver, Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30, 601–610 (1999)

    Article  Google Scholar 

  19. M.J. Mayo, R.W. Siegel, A. Narayanasamy, W.D. Nix, Mechanical-properties of nanophase TiO2 as determined by nanoindentation. J. Mater. Res. 5, 1073–1082 (1990)

    Article  Google Scholar 

  20. S.N.G. Chu, J.C.M. Li, Impression creep of beta-tin single-crystals. Mater. Sci. Eng. 39, 1–10 (1979)

    Article  Google Scholar 

  21. R.E. Frenkel, O.D. Sherby, J.E. Dorn, Activation energies for creep of cadmium, indium, and tin. Acta Metall. 3, 470–472 (1955)

    Article  Google Scholar 

  22. S. Otake, Y. Ishii, N. Matsuno, Migration energy of vacancies in bismuth. Jpn. J. Appl. Phys. 20, 1037–1040 (1981)

    Article  Google Scholar 

  23. H.J. Frost, M.F. Ashby, Deformation-mechanism maps: the plasticity and creep of metals and ceramics (Pergamon Press, New York, 1982)

    Google Scholar 

  24. H.J. Frost, M.F. Ashby, Web source from Thayer School of Engineering at Dartmouth. Deformation-mechanism maps: the plasticity and creep of metals and ceramics. http://engineering.dartmouth.edu/defmech/

  25. J.M. Wheeler, D.E.J. Armstrong, W. Heinz, R. Schwaiger, High temperature nanoindentation: the state of the art and future challenges. Curr. Opin. Solid State Mater. Sci. 19, 354–366 (2015)

    Article  Google Scholar 

  26. V. Raman, R. Berriche, An investigation of the creep processes in tin and aluminum using a depth-sensing indentation technique. J. Mater. Res. 7, 627–638 (1992)

    Article  Google Scholar 

  27. M.J. Mayo, W.D. Nix, A micro-indentation study of superplasticity in Pb, Sn, and Sn–38 wt%-Pb. Acta Metall. 36, 2183–2192 (1988)

    Article  Google Scholar 

  28. E.A. Brandes, G.B. Brook, Smithells Metals Reference Book (Elsevier Butterworth-Heinemann, London, 1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, L., Wu, Y., Wang, S. et al. Creep behavior of Sn–Bi solder alloys at elevated temperatures studied by nanoindentation. J Mater Sci: Mater Electron 28, 4114–4124 (2017). https://doi.org/10.1007/s10854-016-6031-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6031-y

Keywords

Navigation