Skip to main content
Log in

Low-cost and eco-friendly viable approach for synthesis of gadolinium doped nickel ferrite nanoparticles using glucose

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Gadolinium doped nickel ferrite nanoparticles were successfully synthesized by via a sol–gel method with the aid of nickel (II) nitrate, iron (III) nitrate, gadolinium (III) nitrate and glucose without adding external surfactant. Glucose plays role as capping agent, reductant agent, and natural template in the synthesis NiFe2−xGdxO4 nanoparticles. The as-synthesized NiFe2−xGdxO4 nanoparticles were characterized by means of several techniques such as X-ray diffraction, scanning electron microscopy, energy dispersive X-ray microanalysis and UV–Vis diffuse reflectance spectroscopy. The magnetic properties of as-prepared NiFe2−xGdxO4 nanoparticles were also investigated with vibrating sample magnetometer. To evaluate the catalytic properties of nanocrystalline NiFe2−xGdxO4, the photocatalytic degradation of methyl orange under ultraviolet light irradiation was carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. S. Khademolhoseini, M. Zakeri, S. Rahnamaeiyan, M. Nasiri, R. Talebi, J. Mater. Sci. Mater. Electron. 26, 7303 (2015)

    Article  Google Scholar 

  2. J. Safari, Z. Zarnegar, J. Nanostruct. 3, 191 (2013)

    Google Scholar 

  3. F.S. Ghoreishi, V. Ahmadi, M. Samadpourc, J. Nanostruct. 3, 453 (2013)

    Google Scholar 

  4. M. Panahi-Kalamuei, M. Mousavi-Kamazani, M. Salavati-Niasari, J. Nanostruct. 4, 459 (2014)

    Google Scholar 

  5. M. Behpour, M. Mehrzad, S.M. Hosseinpour-Mashkani, J. Nanostruct. 5, 183 (2015)

    Google Scholar 

  6. S. Moshtaghi, M. Salavati-Niasari, D. Ghanbari, J. Nanostruct. 5, 169 (2015)

    Article  Google Scholar 

  7. J. Safaei-Ghomi, S. Zahedi, M. Javid, M.A. Ghasemzadeh, J. Nanostruct. 5, 153 (2015)

    Article  Google Scholar 

  8. E. Khosravifard, M. Salavati-Niasari, M. Dadkhah, G. Sodeifian, J. Nanostruct. 2, 191 (2012)

    Google Scholar 

  9. Ali Sobhani-Nasab, Mohsen Behpour, J. Mater. Sci. Mater. Electron. 27, 1191 (2016)

    Article  Google Scholar 

  10. M. Maddahfar, M. Ramezani, M. Sadeghi, A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron. 26, 7745 (2015)

    Article  Google Scholar 

  11. S.S. Hosseinpour-Mashkani, S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron. 27, 4351 (2016)

    Article  Google Scholar 

  12. K.H. Wu, Y.C. Chang, T.C. Chang, Y.S. Chiu, T.R. Wu, J. Magn. Magn. Mater. 283, 380 (2004)

    Article  Google Scholar 

  13. P.S.A. Kumar, J.J. Shrotri, S.D. Kulkarni, C.E. Deshpande, S.K. Date, Low Mater. Lett. 27, 293 (1996)

    Article  Google Scholar 

  14. C.Y. Tsay, K.S. Liu, T.F. Lin, I.N. Lin, J. Magn. Magn. Mater. 209, 189 (2000)

    Article  Google Scholar 

  15. J. Fan, F.K. Ng, F.R. Sale, Rare Met. 25, 445 (2006)

    Article  Google Scholar 

  16. A.M. Samy, H.M. Ei-Sayed, A.A. Sattar, Phys. Stat. Sol. 200, 401 (2003)

    Article  Google Scholar 

  17. S.F. Yan, W. Ling, E.L. Zhou, J. Cryst. Growth 273, 226 (2004)

    Article  Google Scholar 

  18. B. Skolyszewska, W. Tokarz, K. Przybylski, Z. Kakol, Phys. C Supercond. 387, 290 (2003)

    Article  Google Scholar 

  19. S.E. Jacobo, S. Dubalde, H.R. Bertorello, J. Magn. Magn. Mater. 2253, 272 (2004)

    Google Scholar 

  20. X.Y. Xiang, H.W. Zhang, J. Magn. Mater. 34, 9 (2003)

    Google Scholar 

  21. J.J. Sun, J.B. Li, G.L. Sun, J. Magn. Magn. Mater. 250, 20 (2002)

    Article  Google Scholar 

  22. J. Jiang, L.C. Li, F. Xu, J. Rare Earths 25, 79 (2007)

    Article  Google Scholar 

  23. J. Jiang, L.C. Li, F. Xu, Z.T. Li, J. Rare Earths 23, 259 (2005)

    Google Scholar 

  24. A. Javidan, M. Ramezani, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, J. Mater. Sci. Mater. Electron. 26, 3813 (2015)

    Article  Google Scholar 

  25. S.E. Jacobo, W.G. Fano, A.C. Razzitte, J. Phys. B 320, 261 (2002)

    Article  Google Scholar 

  26. J. Zhuang, Y.H. Chi, J.N. Shi, D.C. Zhu, M.J. Tu, J. Chin. Rare Earth Soc. 20, 324 (2002)

    Google Scholar 

  27. F. Beshkar, M. Salavati-Niasari, J. Nanostruct. 5, 17 (2015)

    Article  Google Scholar 

  28. M. Rahimi-Nasarabadi, J. Nanostruct. 4, 211 (2014)

    Google Scholar 

  29. M.P. Mazhari, A. Abbasi, A. Derakhshan, M. Ahmadi, J. Nanostruct. 1, 99 (2016)

    Google Scholar 

  30. R. Talebi, J. Mater. Sci. Mater. Electron. 6, 5665 (2016)

    Article  Google Scholar 

  31. L. Nejati-Moghadam, A. Esmaeili Bafghi-Karimabad, M. Salavati-Niasari, H. Safardoust, J. Nanostruct. 5, 47 (2015)

    Google Scholar 

  32. M. Behpour, S.M. Ghoreishi, M. Salavati-Niasari, N. Mohammadi, J. Nanostruct. 2, 317 (2012)

    Google Scholar 

Download references

Acknowledgments

Authors are grateful to council of University of Central Tehran for providing financial support to undertake this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruhollah Talebi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebi, R. Low-cost and eco-friendly viable approach for synthesis of gadolinium doped nickel ferrite nanoparticles using glucose. J Mater Sci: Mater Electron 27, 12557–12561 (2016). https://doi.org/10.1007/s10854-016-5386-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5386-4

Keywords

Navigation