Skip to main content
Log in

Role of hexamine: growth of multiarmed ZnO nanorods and evidence of merging due to lateral growth

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The role of hexamine in the growth of 1D ZnO nanostructures, so far is only assumed, unpredictable and not well explained. Further, the role of hexamine in the growth of 1D ZnO nanostructure by hydrothermal method, especially at the higher concentrations (0.08 M and above) has not yet been well reported. The present study is designed to investigate the role of hexamine in lateral and vertical side growth of ZnO nanorods with different concentrations (0.08 M and above) of hexamine by keeping the concentration of zinc nitrate hexahydrate at 0.1 M. The influence of hexamine in the hydrothermal growth of ZnO nanorods is studied with various characterization tools. The results show that hexamine strongly influence the morphology of ZnO nanostructure and single rod structure transforming into multiarmed structure with increase in hexamine concentration. The growth mechanism of multiarmed ZnO nanorods with respect to hexamine is effectively investigated and discussed in detail from the basic nucleation theories. Lateral growth and merging of rods on the surface is evidenced at the higher concentration of hexamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Hofstetter, R. Theron, A.-H. El-Shaer, A. Bakin, A. Waag, Appl. Phys. Lett. 93, 101109-1 (2008)

    Google Scholar 

  2. X. Wang, J. Song, Z.L. Wang, J. Mater.Chem. 17, 711 (2007)

    Article  Google Scholar 

  3. D.P. Norton, Y.W. Heo, M.P. Ivill, K. Ip, S.J. Pearton, M.F. Chisholm, T. Steiner, Mater. Today 7, 34 (2004)

    Article  Google Scholar 

  4. D.J. Milliron, S.M. Hughes, Y. Cui, L. Manna, J.B. Li, L.W. Wang, A.P. Alivisatos, Nature 430, 190 (2004)

    Article  Google Scholar 

  5. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater. 4, 42 (2005)

    Article  Google Scholar 

  6. Y.R. Ryu, J.A. Lubguban, T.S. Lee, H.W. White, T.S. Jeong, C.J. Youn, B.J. Kim, Appl. Phys. Lett. 90, 131115-1 (2007)

    Google Scholar 

  7. J.-I. Song, J.-S. Park, H. Kim, Y.-W. Heo, J.-H. Lee, J.-J. Kim, B.D. Choi, Appl. Phys. Lett. 90, 022106-1 (2007)

    Google Scholar 

  8. Z. Zhang, N.W. Emanetoglu, G. Saraf, Y. Chen, P. Wu, J. Zhong, Y. Lu, J. Chen, O. Mirochnitchenko, M. Inouye, IEEE. Trans. Ultrason. Ferroelectr. Freq. Control 53, 786 (2006)

    Article  Google Scholar 

  9. H.T. Wang, B.S. Kang, F. Ren, L.C. Tien, P.W. Sadik, D.P. Norton, S.J. Pearton, J. Lin, Appl. Phys. Lett. 86, 243503-1 (2005)

    Google Scholar 

  10. Z.L. Wang, J. Phys. Condens. Matter 16, R829 (2004)

    Article  Google Scholar 

  11. J. Song, S. Lim, J. Phys. Chem. C 111, 596 (2007)

    Article  Google Scholar 

  12. S.-F. Wang, T.-Y. Tseng, Y.-R. Wang, C.-Y. Wang, H.-C. Lu, Ceram. Int. 35, 1255 (2009)

    Article  Google Scholar 

  13. Z. Kesic, I. Lukic, D. Brkic, J. Rogan, M. Zdujic, H. Liu, D. Skala, Appl. Catal. A 427–428, 58 (2012)

    Article  Google Scholar 

  14. K.R. Reddy, M. Hassan, V.G. Gomes, Appl. Catal. A 489, 1 (2015)

    Article  Google Scholar 

  15. A.M. Showkat, Y.-P. Zhang, M.S. Kim, A.I. Gopalan, K.R. Reddy, K.-P. Lee, Bull. Korean Chem. Soc. 28, 1985 (2007)

    Article  Google Scholar 

  16. K.R. Reddy, V.G. Gomes, M. Hassan, Mater. Res. Express 1, 015012 (2014)

    Article  Google Scholar 

  17. K.R. Reddy, B.C. Sin, C.H. Yoo, W. Park, K.S. Ryu, J.-S. Lee, D. Sohn, Y. Lee, Scripta Materialia 58, 1010 (2008)

    Article  Google Scholar 

  18. K.R. Reddy, K.-P. Lee, A.I. Gopalan, J. Appl. Polym. Sci. 106, 1181 (2007)

    Article  Google Scholar 

  19. K.R. Reddy, B.C. Sin, K.S. Ryu, J.-C. Kim, H. Chung, Y. Lee, Synth. Met. 159, 595 (2009)

    Article  Google Scholar 

  20. K.R. Reddy, K. Nakata, T. Ochiai, T. Murakami, D.A. Tryk, A. Fujishima, J. Nanosci. Nanotechnol. 11, 3692 (2011)

    Article  Google Scholar 

  21. T. Sreethawong, S. Ngamsinlapasathian, S. Yoshikawa, Chem. Eng. J. 192, 292 (2012)

    Article  Google Scholar 

  22. A. Sugunan, H.C. Warad, M. Boman, J. Dutta, J. Sol-Gel Sci. Technol. 39, 49 (2006)

    Article  Google Scholar 

  23. N.J. Ridha, M.H.H. Jumali, A.A. Umar, F. Alosfur, Int. J. Electrochem. Sci. 8, 4583 (2013)

    Google Scholar 

  24. K. Govender, D.S. Boyle, P.B. Kenway, P. O’Brien, J. Mater. Chem. 14, 2575 (2004)

    Article  Google Scholar 

  25. D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, A. Schulte, Phys. B 403, 3713 (2008)

    Article  Google Scholar 

  26. V. Strano, R.G. Urso, M. Scuderi, K.O. Iwu, F. Simone, E. Ciliberto, C. Spinella, S. Mirabella, J. Phys. Chem. C 118, 28189 (2014)

    Article  Google Scholar 

  27. R. Devaraj, K. Venkatachalam, P.M. Razad, J. Mater. Sci. Mater. Electron. 27, 4011 (2016)

    Article  Google Scholar 

  28. Q. Li, V. Kumar, Y. Li, H. Zhang, T.J. Marks, R.P.H. Chang, Chem. Mater 17, 1001 (2005)

    Article  Google Scholar 

  29. J. Qiu, B. Weng, L. Zhao, C. Chang, Z. Shi, X. Li, H.-K. Kim, Y.-H. Hwang, J. Nanomater. 2014, 1 (2014)

    Article  Google Scholar 

  30. A. Phuruangrat, T. Thongtem, S. Thongtem, Ceram. Int. 40, 9069 (2014)

    Article  Google Scholar 

  31. M.N.R. Ashfold, R.P. Doherty, N.G. Ndifor-Angwafor, D.J. Riley, Y. Sun, Thin Solid Films 515, 8679 (2007)

    Article  Google Scholar 

  32. Z. Zhang, J. Mu, J. Colloid Interface Sci. 307, 79 (2007)

    Article  Google Scholar 

  33. I.N. Stranski, L. Krastanov, Sitzber. Akad. Wiss. Wien, Math-Naturwiss. K1. Abt. IIb 146, 797 (1938)

    Google Scholar 

  34. C.-H. Chiu, Z. Huang, Appl. Phys. Lett. 89, 171904 (2006)

    Article  Google Scholar 

  35. W. Seifert, N. Carlsson, M. Miller, M.-E. Pistol, L. Samuelson, L.R. Wallenberg, Prog. Cryst. Growth Charact. Mater. 33, 423 (1996)

    Article  Google Scholar 

  36. M. Haasan, E. Haque, K.R. Reddy, A.I. Minett, J. Chen, V.G. Gomes, Nanoscale 6, 11988 (2014)

    Article  Google Scholar 

  37. K.R. Reddy, H.M. Jeong, Y. Lee, A.V. Raghu, J. Polym. Sci. Part A: Polym. Chem. 48, 1477 (2010)

    Article  Google Scholar 

  38. K.R. Reddy, K.-P. Lee, J.Y. Kim, Y. Lee, J. Nanosci. Nanotechnol. 8, 5632 (2008)

    Article  Google Scholar 

  39. N.F. Foster, J. Vac. Sci. Technol. 6, 111 (1969)

    Article  Google Scholar 

  40. C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, H. Kalt, Phys. Status Solidi B 247, 1424 (2010)

    Article  Google Scholar 

  41. Q. Li, J. Bian, J. Sun, J. Wang, Y. Luo, K. Sun, D. Yu, Appl. Surf. Sci. 256, 1698 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere gratitude to Dr. Balu, Professor of English (Retd), Government Arts College, Coimbatore whose contribution in grammar is invaluable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Devaraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devaraj, R., Venkatachalam, K., Saravanakumar, K. et al. Role of hexamine: growth of multiarmed ZnO nanorods and evidence of merging due to lateral growth. J Mater Sci: Mater Electron 27, 12201–12208 (2016). https://doi.org/10.1007/s10854-016-5375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5375-7

Keywords

Navigation