Skip to main content
Log in

Rapid microwave-assisted hydrothermal synthesis of hierarchical micro/nanostructured TiO2 with tunable nanomorphologies

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Anatase hierarchical micro/nanostructured TiO2 was successfully prepared by a rapid (10 min) one-pot microwave-assisted hydrothermal method. The nanomorphologies (including the exposed crystal facets) of the as-prepared TiO2 samples could be facilely tuned in the reaction system. The possible formation mechanism of the hierarchical micro/nanostructured TiO2 were discussed in detail, it was found that the chelating role of EDTA could control the slow release of Ti4+-containing species, providing a large space for the controlling of crystallite size and complex nano-morphologies. Moreover, an interesting “crystal facets-dependent photocatalytic selectivity” was found, in which the photocatalytic selectivity could be tuned by modifying the exposed crystal facets of TiO2. With the unique structural properties, the hierarchical micro/nanostructured TiO2 prepared by the present microwave-assisted hydrothermal method might also show potential application in more fields, such as dye-sensitized solar cells, gas sensing and lithium ion batteries, and the present microwave-assisted hydrothermal method could be further used in the rapid synthesis of other inorganic functional nanomaterials with complex hierarchical micro/nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.L. Pang, S. Lim, H.C. Ong, W.T. Chong, Appl. Catal. B Environ. 481, 127–142 (2014)

    Article  Google Scholar 

  2. G. Liu, Z. Su, S. Sarfraz, K. Xi, C. Lai, Mater. Lett. 84, 143–146 (2012)

    Article  Google Scholar 

  3. N. Wu, H.H. Wei, L.Z. Zhang, Environ. Sci. Technol. 1, 419–425 (2012)

    Article  Google Scholar 

  4. Y. Yang, G.Z. Wang, Q. Deng, S.H. Kang, D.H.L. Ng, H.J. Zhao, CrystEngComm 16, 3091–3096 (2014)

    Article  Google Scholar 

  5. M.Y. Wang, L. Sun, Z.Q. Lin, J.H. Cai, K.P. Xie, C.J. Lin, Energy Environ. Sci. 64, 1211–1220 (2013)

    Article  Google Scholar 

  6. Y.S. Wang, S.R. Wang, H.X. Zhang, X.L. Gao, J.D. Yang, L.W. Wang, J. Mater. Chem. A 2, 7935–7943 (2014)

    Article  Google Scholar 

  7. Y.J. Jiang, M.C. Li, D.D. Song, X.D. Li, Y. Yu, J. Solid State Chem. 211, 90–94 (2014)

    Article  Google Scholar 

  8. F. He, F. Ma, J.L. Li, T. Li, G.X. Li, Ceram. Int. 40, 6441–6446 (2014)

    Article  Google Scholar 

  9. B.S. Liu, K. Nakata, M. Sakai, H. Saito, T. Ochiai, T. Murakami, K. Takagi, A. Fujishima, Catal. Sci. Technol. 2, 1933–1939 (2012)

    Article  Google Scholar 

  10. J.T. Park, D.K. Roh, R. Patel, E. Kim, D.Y. Ryu, J.H. Kim, J. Mater. Chem. 20, 8521–8530 (2010)

    Article  Google Scholar 

  11. M.M. Momeni, Y. Ghayeb, M. Davarzadeh, J. Electroanal. Chem. 739, 149–155 (2015)

    Article  Google Scholar 

  12. D.M. Dai, C.D. Si, G.J. Liu, J. Nanosci. Nanotechnol. 15, 5193–5197 (2015)

    Article  Google Scholar 

  13. Z.M. He, J. Liu, J.W. Miao, B. Liu, T.T. Tan, J. Mater. Chem. 2, 1381–1385 (2014)

    Google Scholar 

  14. Q.F. Chen, C.C. Chen, H.W. Ji, W.H. Mab, J.C. Zhao, RSC Adv. 3, 17559–17566 (2013)

    Article  Google Scholar 

  15. M.N. Nadagouda, T.F. Speth, R.S. Varma, Acc. Chem. Res. 44, 469–478 (2011)

    Article  Google Scholar 

  16. M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, T. Tsuji, Chem. Eur. J. 11, 440–452 (2005)

    Article  Google Scholar 

  17. X.Y. Zhang, Z. Liu, Nanoscale 4, 707–741 (2012)

    Article  Google Scholar 

  18. M. Baghbanzadeh, L. Carbone, P.D. Cozzoli, C.O. Kappe, Angew. Chem. Int. Ed. 50, 11312–11359 (2011)

    Article  Google Scholar 

  19. Y.J. Zhu, F. Chen, Chem. Rev. 114, 6462–6555 (2014)

    Article  Google Scholar 

  20. X.F. Wang, H.Q. Jiang, Y.D. Liu, M.D. Gao, Mater. Lett. 147, 72–74 (2015)

    Article  Google Scholar 

  21. A. Suzuki, H. Yamaguchi, H. Kageyama, Y. Oaki, H. Imai, J. Ceram. Soc. Jpn. 123, 79–82 (2015)

    Article  Google Scholar 

  22. M.I. Dar, A.K. Chandiran, M. Gratzel, M.K. Nazeeruddin, S.A. Shivashanka, J. Mater. Chem. A 2, 1662–1667 (2014)

    Article  Google Scholar 

  23. L. Cui, K.N. Hui, K.S. Hui, S.K. Lee, W. Zhou, Z.P. Wan, C.N.H. Thuc, Mater. Lett. 75, 175–178 (2012)

    Article  Google Scholar 

  24. Y. Yang, G.Z. Wang, Q. Deng, D.H.L. Ng, H.J. Zhao, ACS Appl. Mater. Interfaces 6, 3008–3015 (2014)

    Article  Google Scholar 

  25. P.S. Shen, Y.C. Tai, P. Chen, Y.C. Wu, J. Power Sources 247, 444–451 (2014)

    Article  Google Scholar 

  26. C. Carlucci, H. Xu, B.F. Scremin, C. Giannini, T. Sibillano, E. Carlino, V. Videtta, G. Gigli, G. Ciccarella, Sci. Adv. Mater. 6, 1668–1675 (2014)

    Article  Google Scholar 

  27. Y. Yang, G.Z. Wang, Q. Deng, H.M. Wang, Y.X. Zhang, D.H.L. Ng, H.J. Zhao, RSC Adv. 4, 34577–34583 (2014)

    Article  Google Scholar 

  28. J.M. Li, D.S. Xu, Chem. Commun. 46, 2301–2303 (2010)

    Article  Google Scholar 

  29. V. Etacheri, M.K. Seery, S.J. Hinder, S.C. Pillai, Chem. Mater. 22, 3843–3853 (2010)

    Article  Google Scholar 

  30. X.H. Yang, H.G. Yang, C.Z. Li, Chem. Eur. J. 17, 6615–6619 (2011)

    Article  Google Scholar 

  31. P.D. Christy, N. Melikechi, N.S.N. Jothi, A.R.B. Suganthi, P. Sagayaraj, J. Nanopart. Res. 12, 2875–2882 (2010)

    Article  Google Scholar 

  32. J. Pan, G. Liu, G.M. Lu, H.M. Cheng, Angew. Chem. 195, 2133–2137 (2011)

    Article  Google Scholar 

  33. S.W. Liu, J.G. Yu, M. Jaroniec, J. Am. Chem. Soc. 132, 11914–11916 (2010)

    Article  Google Scholar 

  34. Q.J. Xiang, J.G. Yu, M. Jaroniec, Chem. Commun. 47, 4532–4534 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of Jiangxi province of China (Grant No. 20151BAB216008), the open fund of Jiangxi Key Laboratory of Nanomaterials and Sensors (Grant Nos. 2015002, 2015004), and the research projects of education department of Jiangxi province (Grant No. 150308).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Yang or Yan Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Liang, Y., Hu, J. et al. Rapid microwave-assisted hydrothermal synthesis of hierarchical micro/nanostructured TiO2 with tunable nanomorphologies. J Mater Sci: Mater Electron 27, 11606–11612 (2016). https://doi.org/10.1007/s10854-016-5292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5292-9

Keywords

Navigation