Skip to main content

Advertisement

Log in

Scaled-up prototype of carbon nanotube production system utilizing waste cooking palm oil precursor and its nanocomposite application as supercapacitor electrodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A simple approach has been introduced for the first time for a scaled-up prototype of a carbon nanotube (CNT) production system by utilizing waste cooking palm oil (WCPO) as carbon feedstock. A modified thermal chemical vapor deposition (TCVD) setup is equipped with a peristaltic sprayer to continuously supply the precursor and catalyst into the system. A total amount of 1000 ml WCPO precursor was sprayed continuously during the experiment with 5.33 wt% ferrocene as catalyst at a flow rate of 30 ml/min. A total of ~433 g CNT were produced with a high carbon conversion rate of 56 %. The produced CNT were then characterized by using electron microscopy, micro-Raman spectroscopy, and thermogravimetric analysis. Growth of dense CNT with a high purity of ~87 % and good crystallinity (I D /I G ratio ~0.47) occurred. A CNT/natural rubber-latex (NRL) nanocomposite was also prepared by using latex nanotechnology for supercapacitor application. The nanocomposite exhibited a good capacitance performance with a specific capacitance of 81.82 F/g. This study determined that a high production of CNT using modified TCVD method provided benefits for its utilization as composite material, especially CNT/NRL nanocomposite, for supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Eklund, P. Ajayan, R. Blackmon, A.J. Hart, J. Kong, et al., World Technology Evaluation Center Inc., USA (2007)

  2. Q. Zhang, M.Q. Zhao, J.Q. Huang, J.Q. Nie, W. Fei, Carbon 48, 1196 (2010)

    Article  Google Scholar 

  3. M. Kumar, Y. Ando, J. Nanosci. Nanotechnol. 10, 3739 (2010)

    Article  Google Scholar 

  4. N.A. Asli, M.S. Shamsudin, A.B. Suriani, M. Rusop, A. Saifollah, Int. J. Ind. Chem. 4, 1 (2013)

    Article  Google Scholar 

  5. A.B. Suriani, A.A. Azira, S.F. Nik, R. Md Nor, M. Rusop, Mater. Lett. 63, 2704 (2009)

    Article  Google Scholar 

  6. S.A.M. Zobir, A.B. Suriani, S. Abdullah, Z. Zainal, S.H. Sarijo, M. Rusop, J. Nanomater. 2012, 11 (2012)

    Google Scholar 

  7. M.S. Azmina, A.B. Suriani, M. Salina, A.A. Azira, A.R. Dalila et al., Nano Hybrids 2, 43 (2012)

    Article  Google Scholar 

  8. S. Paul, S.K. Samdarshi, New Carbon Mater. 26, 85 (2011)

    Article  Google Scholar 

  9. A.B. Suriani, S. Alfarisa, A. Mohamed, I.M. Isa, A. Kamari et al., Mater. Lett. 139, 220 (2015)

    Article  Google Scholar 

  10. J. Fargione, J. Hill, D. Tilman, S. Polasky, P. Howthorne, Science 319, 1235 (2008)

    Article  Google Scholar 

  11. A.B. Suriani, R. Md Nor, M. Rusop, J. Ceram. Soc. Jpn. 118, 963 (2010)

    Article  Google Scholar 

  12. A.B. Suriani, R.N. Safitri, A. Mohamed, S. Alfarisa, I.M. Isa et al., Mater. Lett. 149, 66 (2015)

    Article  Google Scholar 

  13. A.B. Suriani, R.N. Safitri, A. Mohamed, S. Alfarisa, M.F. Malek et al., J. Alloys Cmpd. 656, 368 (2016)

    Article  Google Scholar 

  14. A.B. Suriani, A.R. Dalila, A. Mohamed, M.H. Mamat, M. Salina et al., Mater. Lett. 101, 61 (2013)

    Article  Google Scholar 

  15. A.B. Suriani, A.R. Dalila, A. Mohamed, M.H. Mamat, M.F. Malek et al., Mater. Design 90, 185 (2016)

    Article  Google Scholar 

  16. A.B. Suriani, A.R. Dalila, A. Mohamed, T. Soga, M. Tanemura, Mater. Chem. Phys. 165, 1 (2015)

    Article  Google Scholar 

  17. M.S. Azmina, A.B. Suriani, A.N. Falina, M. Salina, M. Rusop, Adv. Mater. Res. 364, 359 (2012)

    Article  Google Scholar 

  18. H. Hu, D. Zhang, Y. Liu, W. Yu, T. Guo, Vacuum 115, 70 (2015)

    Article  Google Scholar 

  19. S.S. Madani, K. Zare, M. Ghoranneviss, A.S. Elahi, J. Alloys Compd. 648, 1104 (2015)

    Article  Google Scholar 

  20. Z. Yang, X. Chen, H. Nie, K. Zhang, W. Li et al., Nanotechnology 19, 1 (2008)

    Google Scholar 

  21. J. Lu, L.T. Drzal, R.M. Worden, I. Lee, Chem. Mater. 19, 6240 (2007)

    Article  Google Scholar 

  22. M.S. Shamsudin, M.F. Achoi, M.N. Asiah, L.N. Ismail, A.B. Suriani et al., J. Nanomater. 2012, 972126 (2012)

    Article  Google Scholar 

  23. M.S. Shamsudin, A.B. Suriani, S. Abdullah, S.Y.S. Yahya, M. Rusop, J. Spectrosc. 2013, 167357 (2013)

    Google Scholar 

  24. A. Mohamed, K.A. Argo, A.B. Suriani, A.A. Aziz, M. Sagisaka et al., Colloid Polym. Sci. 292, 3013 (2014)

    Article  Google Scholar 

  25. A. Mohamed, A.K. Anas, A.B. Suriani, T. Ardyani, W.M.W. Zin et al., J. Colloid Inter. Sci. 455, 178 (2015)

    Article  Google Scholar 

  26. N. Das, A. Dalai, J.S.S. Mohammadzadeh, J. Adjaye, Carbon 44, 2236 (2006)

    Article  Google Scholar 

  27. R. Kumar, R.S. Tiwari, O. Srivastava, Nanoscale Res. Lett. 6, 92 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Kurita Water and Environment Foundation Grant, (Grant code: 2015-0151-102-11), the National Nanotechnology Directorate Division Research Grant (Grant code: 2014-0015-102-03), the Fundamental Research Grant Scheme (Grant code: 2015-0154-102-02), the Prototype Development Research Grant Scheme (Grant code: 2013-0097-102-32), and the MARA Innovation and Research Grant Scheme (Grant code: 2016-0006-101-20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Suriani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suriani, A.B., Norhafizah, J., Mohamed, A. et al. Scaled-up prototype of carbon nanotube production system utilizing waste cooking palm oil precursor and its nanocomposite application as supercapacitor electrodes. J Mater Sci: Mater Electron 27, 11599–11605 (2016). https://doi.org/10.1007/s10854-016-5291-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5291-x

Keywords

Navigation