Skip to main content

Advertisement

Log in

One-step synthesis of chitin-derived nitrogen-rich porous carbon fiber assisted with ammonium chloride chemical blowing for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rich nitrogen-doped porous carbon fiber (NC–NH4Cl) was successfully prepared from chitin via environmentally friendly simple pyrolysis supplemented with ammonium chloride as a recyclable porogen and nitrogen source. Compared with NH4HCO3 and (NH4)2SO4, NH4Cl proved to be the most effective porogen and nitrogen dopant for chitin. The as-made NC–NH4Cl exhibited a 3D architecture formed by numerous intertwined microfibrils with a hierarchical micro/mesoporous structure. Moreover, NC–NH4Cl possessed a high nitrogen content of 10.0 at.%, and about 70% of the nitrogen was in the form of pyridinic-N and pyrrolic-N. The NC–NH4Cl electrode could deliver superior specific capacitance of 284 F g−1 at a current density of 0.5 A g−1, as well as favorable rate performance (ca. 66.3% retention as the current density rose from 0.5 to 20 A g−1) and long cycle life (ca. 96.9% maintained after 5000 cycles) in a three-electrode configuration. The assembled NC–NH4Cl-based symmetric capacitor presented a desirable energy density of 16.67 Wh kg−1 at 1 A g−1. The results suggest that NC–NH4Cl is a promising candidate for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Simon, Y. Gogotsi, B. Dunn, Science 343, 1210–1211 (2014)

    Article  Google Scholar 

  2. S. Roldán, D. Barreda, M. Granda, R. Menéndez, R. Santamaría, C. Blanco, Phys. Chem. Chem. Phys. 17, 1084–1092 (2015)

    Article  Google Scholar 

  3. A. Elmouwahidi, Z. Zapata-Benabithe, F. Carrasco-Marín, C. Moreno-Castilla, Biores. Technol. 111, 185–190 (2012)

    Article  Google Scholar 

  4. B. Akinwolemiwa, C. Peng, G.Z. Chen, J. Electrochem. Soc. 162, A5054–A5059 (2015)

    Article  Google Scholar 

  5. H. Wei, W. Qian, N. Fu, et al, J. Mater. Sci. 52, 10308–10320 (2017)

    Article  Google Scholar 

  6. H. Guo, Q. Gao, J. Power Sources 186, 551–556 (2009)

    Article  Google Scholar 

  7. W. Si, J. Zhou, S. Zhang, S. Li, W. Xing, S. Zhuo, Electrochim. Acta 107, 397–405 (2013)

    Article  Google Scholar 

  8. Z.Y. Yu, L.F. Chen, L.T. Song, Y.W. Zhu, H.X. Ji, S.H. Yu, Nano Energy 15, 235–243 (2015)

    Article  Google Scholar 

  9. U.B. Nasini, V.G. Bairi, S.K. Ramasahayam, S.E. Bourdo, T. Viswanathan, A.U. Shaikh, J. Power Sources 250, 257–265 (2014)

    Article  Google Scholar 

  10. S.L. Candelaria, B.B. Garcia, D. Liu, G. Cao, J. Mater. Chem. 22, 9884–9889 (2012)

    Article  Google Scholar 

  11. P. Yang, N. Huang, Y.X. Leng et al., Nucl. Instr. Methods Phys. Res. 242, 22–25 (2006)

    Article  Google Scholar 

  12. J.W. Jeon, R. Sharma, P. Meduri et al., ACS Appl. Mater. Interfaces 6, 7214–7222 (2014)

    Article  Google Scholar 

  13. J. Wei, D. Zhou, Z. Sun, Y. Deng, Y. Xia, D. Zhao, Adv. Funct. Mater. 23, 2322–2328 (2013)

    Article  Google Scholar 

  14. H. Liu, Y. Zhang, R. Li et al., Carbon 48, 1498–1507 (2010)

    Article  Google Scholar 

  15. P.J. Peter, J. Zhang, D. Su, T. Arne, A. Markus, Adv. Mater. 22, 87–92 (2010)

    Article  Google Scholar 

  16. T.D. Nguyen, K.E. Shopsowitz, M.J. Maclachlan, J. Mater. Chem. A 2, 5915–5921 (2014)

    Article  Google Scholar 

  17. R. Hao, H. Lan, C. Kuang, H. Wang, L. Guo, Carbon 128, 224–230 (2017)

    Article  Google Scholar 

  18. B. Wang, S. Li, X. Wu, J. Liu, J. Chen, J. Mater. Chem. A 4, 11789–11799 (2016)

    Article  Google Scholar 

  19. H. Yuan, L. Deng, X. Cai, S. Zhou, Y. Chen, Y. Yuan, RSC Adv. 5, 56121–56129 (2015)

    Article  Google Scholar 

  20. R.J. White, M. Antonietti, M.M. Titirici, J. Mater. Chem. 19, 8645–8650 (2009)

    Article  Google Scholar 

  21. A.C. Lua, T. Yang, J. Colloid Interface Sci. 290, 505–513 (2005)

    Article  Google Scholar 

  22. M. Molina-Sabio, F. Rodríguez-Reinoso, F. Caturla, M.J. Sellés, Carbon 33, 1105–1113 (1995)

    Article  Google Scholar 

  23. J. Ma, F. Yu, L. Zhou et al., ACS Appl. Mater. Interfaces 4, 5749–5760 (2012)

    Article  Google Scholar 

  24. E. Frackowiak, G. Lota, G. Gryglewicz, J. Machnikowski, Electrochim. Acta 49, 515–523 (2004)

    Article  Google Scholar 

  25. J. Zhou, L. Bao, S. Wu, W. Yang, H. Wang, Carbohydr. Polym. 173, 321–329 (2017)

    Article  Google Scholar 

  26. X. Wang, Y. Zhang, C. Zhi et al., Nat. Commun. 4, 2905–2912 (2013)

    Article  Google Scholar 

  27. J. Zhu, D. Xu, C. Wang, W. Qian, J. Guo, F. Yan, Carbon 115, 1–10 (2017)

    Article  Google Scholar 

  28. L. Deng, G. Zhu, J. Wang et al., J. Power Sources 196, 10782–10787 (2011)

    Article  Google Scholar 

  29. J. Qu, C. Geng, S. Lv, G. Shao, S. Ma, M. Wu, Electrochim. Acta 176, 982–988 (2015)

    Article  Google Scholar 

  30. G. Ma, F. Ran, H. Peng et al., RSC Adv. 5, 83129–83138 (2015)

    Article  Google Scholar 

  31. M.P. Bichat, E. Raymundo-Piñero, F. Béguin, Carbon 48, 4351–4361 (2010)

    Article  Google Scholar 

  32. G. Ma, Q. Yang, K. Sun et al., Biores. Technol. 197, 137–142 (2015)

    Article  Google Scholar 

  33. G. Ma, Y. Wu, K. Sun, H. Peng, H. Wang, Z. Lei, Mater. Lett. 132, 41–44 (2014)

    Article  Google Scholar 

  34. J. Han, G. Xu, B. Ding, J. Pan, H. Dou, D. Macfarlane, J. Mater. Chem. A 2, 5352–5357 (2014)

    Article  Google Scholar 

  35. X. Du, C. Zhou, H. Liu, Y. Mai, G. Wang, J. Power Sources 241, 460–466 (2013)

    Article  Google Scholar 

  36. K.S. Kim, S.J. Park, J. Electroanal. Chem. 673, 58–64 (2012)

    Article  Google Scholar 

  37. Y. Tan, C. Xu, G. Chen et al., ACS Appl. Mater. Interfaces 5, 2241–2248 (2013)

    Article  Google Scholar 

  38. T. Lin, I.W. Chen, F. Liu et al., Science 350, 1508–1513 (2015)

    Article  Google Scholar 

  39. C.O. Ania, V. Khomenko, E. Raymundo-Piñero, J.B. Parra, F. Béguin, Adv. Funct. Mater. 17, 1828–1836 (2010)

    Article  Google Scholar 

  40. E.J. Ra, E. Raymundo-Piñero, Y.H. Lee, F. Béguin, Carbon 47, 2984–2992 (2009)

    Article  Google Scholar 

  41. Q. Yan, C. Shuai, L. Ying et al., Carbohydr. Polym. 133, 163–170 (2015)

    Article  Google Scholar 

  42. K. Nueangnoraj, H. Nishihara, T. Ishii et al., Energy Storage Mater. 1, 35–41 (2015)

    Article  Google Scholar 

  43. L. Ren, G. Zhang, Z. Yan et al., ACS Appl. Mater. Interfaces 7, 28294–28302 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (Project No. 21406044) and the Zhejiang Province Nature Science Foundation of China (Grant No. LQ17B060006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Bao, L., Wu, S. et al. One-step synthesis of chitin-derived nitrogen-rich porous carbon fiber assisted with ammonium chloride chemical blowing for supercapacitors. J Mater Sci: Mater Electron 29, 12340–12350 (2018). https://doi.org/10.1007/s10854-018-9347-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9347-y

Navigation