Skip to main content

Advertisement

Log in

Structural evolution, relaxation behaviors and dielectric properties of BaTiO3–BiAlO3 perovskite solid solutions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The polycrystalline (1 − x)BaTiO3xBiAlO3 ((1 − x)BT–xBA) (x = 0–0.15) ceramics are fabricated via a conventional solid state reaction method. X-ray diffraction and Raman results show a structural evolution from a tetragonal phase to a cubic one with increasing x. Dielectric studies exhibit a diffuse phase transition characterized by a strong temperature and frequency dispersion of permittivity. The dielectric maxima temperature T m decrease, due to the strong interaction of Bi3+ and Al3+ with Ba2+ and Ti4+. (1 − x)BT–xBA ceramics underwent a ferroelectric to relaxor transition at x = 0.06. Activation energy with dozens meV is obtained using the Vogel-Fulcher relationship, which is attributed to thermally activated off-center ion hopping. Raman spectra of the (1 − x)BT–xBA ceramics at 264 cm−1, the paraelectric and cubic phase exist in the ceramics, so the polarization-electric plots are in the form of narrow ellipsoids with the elevation of x. Meanwhile, the discharged energy density of 0.85BT–0.15BA is 0.16 J/cm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.A. Smolenskii, V.A. Isupov, Segnetoelektricheskie svoistva tverdykh rastvorov stannata bariya v titanate bariya. Zh Tekh Fiz 24, 1375–1386 (1954)

    Google Scholar 

  2. V. Westphal, W. Kleemann, Diffuse phase transitions and random-field-induced domain states of the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3. Phys Rev Lett 68, 847–850 (1992)

    Article  Google Scholar 

  3. K.T. Wang, Y. He, Z.Y. Liang, X.M. Cui, Preparation of LTCC materials with adjustable permittivity based on BaO–B2O3–SiO2/BaTiO3 system. Mater Res Bull 65, 249–252 (2015)

    Article  Google Scholar 

  4. N. Raengthon, D.P. Cannn, Dielectric relaxation in BaTiO3–Bi(Zn1/2Ti1/2)O3 ceramics. J Am Ceram Soc 95, 1064–1612 (2011)

    Google Scholar 

  5. A. Zeb, S.J. Milne, Temperature-stable dielectric properties from  20 to 430 °C in the system BaTiO3–Bi(Mg0.5Zr0.5)O3. J Eur Ceram Soc 34, 3159–3166 (2014)

    Article  Google Scholar 

  6. N. Raengthon, T. Sebastian, D. Cumming, I.M. Reaney, D.P. Cann, BaTiO3–BiZn0.5Ti0.5O3–BiScO3 ceramics for high-temperature capacitor application. J Am Ceram Soc 95, 3554–3561 (2012)

    Article  Google Scholar 

  7. A.A. Bokov, Z.-G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci 41, 31–52 (2006)

    Article  Google Scholar 

  8. H.C. Wang, W.A. Schulze, The role of excess magnesium oxide or lead oxide in determining the microstructure and properties of lead magnesium niobate. J Am Ceram Soc 73, 825–832 (1990)

    Article  Google Scholar 

  9. V.V. Shvartsman, D.C. Lupascu, Lead-free relaxor ferroelectrics. J Am Ceram Soc 95, 1–26 (2012)

    Article  Google Scholar 

  10. C. Laulhé, F. Hippert, J. Kreisel, M. Maglione, A. Simon, J.L. Hazemann, V. Nassif, EXAFS study of lead-free relaxor ferroelectric BaTi1–x Zr x O3 at the Zr K edge. Phys Rev B 74, 014106-112 (2006)

    Article  Google Scholar 

  11. T. Badapanda, S.K. Rout, L.S. Cavalcante, J.C. Sczancoski, S. Panigrahi, E. Longo, M. Siu Li, Optical and dielectric relaxor behaviour of Ba(Zr0.25Ti0.75)O3 ceramic explained by means of distorted clusters. J Phys D Appl Phys 42, 175414-19 (2009)

    Article  Google Scholar 

  12. R. Ranjan, A.K. Kalyani, R. Garg, P.S.R. Krishna, Structure and phase transition of the (1 − x)PbTiO3–(x)BiAlO3 system. Solid State Commun 149, 2098–2101 (2009)

    Article  Google Scholar 

  13. Y.Q. Yao, X.Q. Wu, W. Ren, P. Ren, Z.G. Ye, Preparation and electrical properties of (1 − x)(Na0.5Bi0.5)TiO3xBiAlO3 thin films by a sol–gel process. Ceram Int 41, S240–S245 (2015)

    Article  Google Scholar 

  14. R.Z. Zuo, D.Y. Lv, J. Fu, Y. Liu, L.T. Li, Phase transition and electrical properties of lead free (Na0.5Bi0.5)NbO3–BiAlO3 ceramics. J Alloys Comp 476, 836–839 (2009)

    Article  Google Scholar 

  15. G. Schileo, L. Luisman, A. Feteira, M. Deluca, K. Reichmann, Structure-property relationships in BaTiO3–BiFeO3–BiYbO3 ceramics. J Eur Ceram Soc 33, 1457–1468 (2013)

    Article  Google Scholar 

  16. T. Strathdee, L. Luisman, A. Feteira, K. Reichmann, Ferroelectric to relaxor crossover in (1 − x) BaTiO3xBiYbO3 (0 ≤ x ≤ 0.08) ceramics. J Am Ceram Soc 94, 2292–2295 (2011)

    Article  Google Scholar 

  17. Y. Shiratori, C. Pithan, J. Dornseiffer, R. Waser, Raman scattering studies on nanocrystalline BaTiO3. PartII—consolidated polycrystalline ceramics. J Raman Spectrosc 38, 1300–1306 (2007)

    Article  Google Scholar 

  18. P.A. Fleury, P.D. Lazay, Acoustic-soft-optic mode interactions in ferroelectric BaTiO3. Phys Rev Lett 26, 1331–1334 (1971)

    Article  Google Scholar 

  19. R. Farhi, M.E. Marssi, A. Simon, A Raman and dielectric study of ferroelectric Ba(Ti1−x Zr x )O3 ceramics. Eur Phys J B 9, 599–604 (1999)

    Article  Google Scholar 

  20. N. Baskaran, A. Ghule, C. Bhongale, R. Murugan, H. Chang, Phase transfornation studies of ceramics BaTiO3 using thermo-Raman and dielectric constant measurements. J Appl Phys 91, 10038–10043 (2002)

    Article  Google Scholar 

  21. N.K. Karan, R.S. Katiyar, T. Maiti, R. Guo, A.S. Bhalla, Raman spectral studies of Zr4+–rich BaZr x Ti(1−x)O3 (0.5 ≤ x ≤ 1.00). J Raman Spectrosc 40, 370–375 (2009)

    Article  Google Scholar 

  22. U.M. Pasha, H. Zheng, O.P. Thakur, A. Feteira, K.R. Whittle, D.C. Sinclair, I.M. Reaney, In situ Raman spectroscopy of A-site doped barium titanate. Appl Phys Lett 91(6), 062908 (2007)

    Article  Google Scholar 

  23. J. Kreisel, P. Bouvier, M. Maglione, B. Dkhil, A. Simon, High-pressure Raman investigation of the Pb-free relaxor BaTi0.65Zr0.35O3. Phys Rev B 69, 092104 (2004)

    Article  Google Scholar 

  24. Y. Sun, H.X. Liu, H. Hao, L. Zhang, S.J. Zhang, The role of Co in the BaTiO3–Na0.5Bi0.5O3 based X9R ceramics. Ceram Int 41, 931–939 (2015)

    Article  Google Scholar 

  25. S.F. Wang, J.H. Li, Y.F. Hsu, Y.C. Wu, Y.C. Lai, M.H. Chen, Dielectric properties and microstructures of non-reducible high- temperature stable X9R ceramics. J Eur Ceram Soc 33, 1793–1799 (2013)

    Article  Google Scholar 

  26. F.D. Morrison, D.C. Sinclain, A.R. West, Electrical and structural characteristics of lanthanum-doped barium titanate ceramics. J Appl Phys 86, 6355–6366 (1999)

    Article  Google Scholar 

  27. F. Zhu, T.A. Skidmore, A.J. Bell, T.P. Comyn, C.W. James, M. Ward et al., Diffuse dielectric behaviour in Na0.5Bi0.5NbO3–LiTaO3–BiScO3 lead-free ceramics. Mater Chem Phys 129, 411–417 (2011)

    Article  Google Scholar 

  28. Q. Zhang, Z. Li, F. Li, Z. Xu, Structural and dielectric properties of Bi(Mg1/2Ti1/2)O3–BaTiO3 lead-free ceramics. J Am Ceram Soc 94, 4335–4339 (2011)

    Article  Google Scholar 

  29. S. Mahajanl, O.P. Thakur, Ferroelectric relaxor behaviour and impedance spectroscopy of Bi2O3-doped barium zircoiun titanate ceramics. J Phys D Appl Phys 42, 065413 (2009)

    Article  Google Scholar 

  30. Z. Wang, X.M. Chen, L. Ni, Y.Y. Liu, X.Q. Liu, Dielectric relaxations in Ba(Fe1/2Ta1/2)O3 giant dielectric constant ceramics. Appl Phys Lett 90, 102905 (2007)

    Article  Google Scholar 

  31. A. Tkach, P. Vilarinho, A. Kholkin, A. Pashkin, S. Veljko, J. Petzelt, Broad-band dielectric spectroscopy analysis of relaxation dynamics in Mn-doped SrTiO3 ceramics. Phys Rev B 73, 104113 (2006)

    Article  Google Scholar 

  32. B.J. Chu, X. Zhou, K.L. Ren, B. Neese, A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–346 (2006)

    Article  Google Scholar 

  33. X.H. Hao, J.W. Zhai, X. Yao, Improved energy storage performance and fatigue endurance of Sr-doped PbZrO3 antiferroelectric thin films. J Am Ceram Soc 92, 1133–1135 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (51372144) and the Key Program of Innovative Research Team of Shaanxi Province (2014KCT-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongping Pu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Pu, Y., Li, X. et al. Structural evolution, relaxation behaviors and dielectric properties of BaTiO3–BiAlO3 perovskite solid solutions. J Mater Sci: Mater Electron 27, 11565–11571 (2016). https://doi.org/10.1007/s10854-016-5287-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5287-6

Keywords

Navigation