Skip to main content
Log in

Microwave assisted synthesis of Sn(1−x)CoxO2 nanoparticles: effect of impurity phase formation on structural, optical and electrochemical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocrystalline Sn(1−x)CoxO2 (x = 0, 0.01, 0.03 and 0.05) nanoparticles have been synthesized under microwave irradiation using oxalic acid (H2C2O4) as reducing agent. X-ray diffraction studies show that the prepared nanoparticles are crystalline with tetragonal crystal system and with few additional phases, which is further supported by Raman spectroscopy. The variation in molar concentration of Co2+ ions had a significant effect on size and morphological aspects which is evident from high resolution microscopic images. The emission owing to band edge position, recombination with V ++o centers and recombination with shallow level defects were observed from the Photoluminescence spectrum. The existence of room temperature ferromagnetism has been clearly observed using magnetization hysteresis measurements and the magnetic moments are found to decrease with the increased cobalt ions concentration. The decrease in charge carriers that arises due to the formed impurity phases and its significant effect on electron transfer capability have been discussed with the assistance of cyclic voltammetry. This study possibly will bring better insight for understanding the effects of doping concentration, formation of impurity phases and explicate the consequences of them on various properties of nanostructured materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Srinivas, M. Vithal, B. Sreedhar, M.M. Raja, P.V. Reddy, Structural, optical, and magnetic properties of nanocrystalline Co-doped SnO2 based diluted magnetic semiconductors. J. Phys. Chem. C 113, 3543–3552 (2009)

    Article  Google Scholar 

  2. M. Aziz, S.S. Abbas, W.R.W. Baharom, Size-controlled synthesis of SnO2 nanoparticles by sol–gel method. Mater. Lett. 91, 31–34 (2013)

    Article  Google Scholar 

  3. L. Liu, C. Guo, S. Li, L. Wang, Q. Dong, W. Li, Improved H2 sensing properties of Co-doped SnO2 nanofibers. Sens. Actuators, B 150, 806–810 (2010)

    Article  Google Scholar 

  4. K. Lagha, M.S. Belkaid, L. Escoubas, M. Pasquinelli, Elaboration of heterojunction solar cell by deposit of tin oxide films on silicon by APCVD. Thin Solid Films 518, 1218–1221 (2009)

    Article  Google Scholar 

  5. A.S. Ahmed, S.M. Muhamed, M.L. Singla, S. Tabassum, A.H. Naqvi, A. Azam, Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J. Lumin. 131, 1 (2011)

    Article  Google Scholar 

  6. S. Sambasivam, S.B. Kim, J.H. Jeong, B.C. Choi, K.W. Lim, S.S. Kim, T.K. Song, Effect of Er3+ doping in SnO2 semiconductor nanoparticles synthesized by sol gel technique. Curr. Appl. Phys. 10, 1383–1386 (2012)

    Article  Google Scholar 

  7. K. Karthikeyan, S. Amaresh, D. Kalpana, R. KalaiSelvan, Y.S. Lee, Electrochemical supercapacitor studies of hierarchical structured Co2+-substituted SnO2 nanoparticles by a hydrothermal method. J. Phys. Chem. Solid 73, 363–367 (2012)

    Article  Google Scholar 

  8. J.K. Kwak, K.H. Park, D.Y. Yun, D.U. Lee, T.W. Kim, Microstrucural and optical properties of SnO2 nanoparticles formed by using a solvothermal synthesis method. J. Koraen Phys. Soc. 57, 1803–1806 (2010)

    Article  Google Scholar 

  9. G. Sakai, N.S. Baik, N. Miura, N. Yamazoe, Gas sensing properties of tin oxide thin films fabricated from hydrothermally treated nanoparticles: dependence of CO and H2 response on film thickness. Sens. Actuators, B 77, 116–121 (2001)

    Article  Google Scholar 

  10. X.-L. Hu, Y.-J. Zhu, S.-W. Wang, Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods. Mater. Chem. Phys. 88, 421–426 (2004)

    Article  Google Scholar 

  11. R. Rella, A. Serra, P. Siciliano, L. Vasanelli, G. De, A. Licciulli, A. Quirini, Tin oxide-based gas sensors prepared by the sol–gel process. Sens. Actuators, B 44, 462–467 (1997)

    Article  Google Scholar 

  12. A. Sharma, A.P. Singh, P. Thakur, N.B. Brookes, S. Kumar, C.G. Lee, R.J. Choudhary, K.D. Verma, R. Kumar, Structural, electronic, and magnetic properties of Co doped SnO2 nanoparticles. J. Appl. Phys. 107, 093918 (2010)

    Article  Google Scholar 

  13. M. Bhagwat, P. Shah, V. Ramaswamy, Synthesis of nanocrystalline SnO2 powder by amorphous citrate route. Mater. Lett. 57, 1604–1611 (2003)

    Article  Google Scholar 

  14. M.A. Farrukh, B.-T. Heng, R. Adnan, Surfactant-controlled aqueous synthesis of SnO2 nanoparticles via the hydrothermal and conventional heating methods. Turk. J. Chem. 34, 537–550 (2010)

    Google Scholar 

  15. N. Dahal, S. Gracia, J. Zhou, S.M. Humphrey, Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis. ACS Nano 6, 9433–9446 (2012)

    Article  Google Scholar 

  16. V. Subramanian, W.W. Burke, H. Zhu, B. Wei, Novel microwave synthesis of nanocrystalline SnO2 and its electrochemical properties. J. Phys. Chem. C 112, 4550–4556 (2008)

    Article  Google Scholar 

  17. P. Lidstrom, J. Tierney, B. Wathey, J. Westman, Microwave assisted organic synthesis—a review. Tetrahedron 57, 9225–9283 (2001)

    Article  Google Scholar 

  18. M.N. Ashiq, S. Saleem, M.A. Malana, A.U. Rehman, Physical, electrical and magnetic properties of nanocrystalline Zr–Ni doped Mn-ferrite synthesized by the co-precipitation method. J. Alloys Compd. 486, 640–644 (2009)

    Article  Google Scholar 

  19. L.M. Fang, X.T. Zu, Z.J. Li, S. Zhu, C.M. Liu, L.M. Wang, F. Gao, Microstructure and luminescence properties of Co-doped SnO2 nanoparticles synthesized by hydrothermal method. J. Mater. Sci.: Mater. Electron. 19, 868–874 (2008)

    Google Scholar 

  20. A. Sharma, A.P. Pratap Singh, P. Thakur, N.B. Brookes, S. Kumar, C.G. Lee, R.J. Choudhary, K.D. Verma, S. Ravi Kumar, J. Appl. Phys. 107, 093918 (2010)

    Article  Google Scholar 

  21. M.M.B.M. Mohagheghi, M.S. Saremi, The electrical, optical, structural and thermoelectrical characterization of n- and p-type cobalt-doped SnO2transparent semiconducting films prepared by spray pyrolysis technique. Phys. B 405, 4205 (2010)

    Article  Google Scholar 

  22. P. Baraneedharan, C. Siva, A. Saranya, R. Jayavel, K. Nehru, M. Sivakumar, Dual emissive Sn(1−2x) Cu x  Co x  O2 nanostructures—a correlation study of doping concentration on structural, optical and electrical properties. Superlattices Microstruct. 68, 66–75 (2014)

    Article  Google Scholar 

  23. A. Dieguez, A.R. Rodriguez, A. Vila, J.R. Morante, The complete Raman spectrum of nanometric SnO2 particles. J. Appl. Phys. 90, 1550 (2001)

    Article  Google Scholar 

  24. L.Z. Liu, T.H. Li, X.L. Wu, J.C. Shen, P.K. Chu, Identification of oxygen vacancy types from Raman spectra of SnO2nanocrystals. J. Raman Spectrosc. 43, 1423–1426 (2012)

    Article  Google Scholar 

  25. A. Dieguezs, A.R. Rodriguez, A. Vila, J.R. Morante, The complete Raman spectrum of nanometric SnO2 particles. J. Appl. Phys. 90, 1550–1557 (2001)

    Article  Google Scholar 

  26. K.N. Yu, Y. Xiong, Y. Liu, C. Xiaong, Microstructural change of nano-SnO2 grain assemblages with the annealing temperature. Phys. Rev. B. 55, 2666–2671 (1997)

    Article  Google Scholar 

  27. A.M. Mazzone, A quantum mechanical study of the stability of SnO2 nanocrystalline grains. J. Phys: Condens. Mater. 14, 12819–12824 (2002)

    Google Scholar 

  28. D.L. Hou, H.J. Meng, L.Y. Jia, X.J. Ye, H.J. Zhou, X.L. Li, Oxygen vacancy enhanced the room temperature ferromagnetism in Ni-doped TiO2 thin films. Phys. Lett. A 364, 318–322 (2007)

    Article  Google Scholar 

  29. J.A.T. Antonio, R.G. Baez, P.J. Sebastian, A.A. Vazquez, Thermal stability and structural deformation of rutile SnO2 nanoparticles. J. Solid State Chem. 174, 241–248 (2003)

    Article  Google Scholar 

  30. J. Kaur, J. Shah, R.K. Kotnala, K.C. Verma, Raman spectra, photoluminescence and ferromagnetism of pure, Co and Fe doped SnO2 nanoparticles. Ceram. Int. 38, 5563–5570 (2012)

    Article  Google Scholar 

  31. J. Lang, X. Li, J. Yang, L. Yang, Y. Zhang, Y. Yan, Rapid synthesis and luminescence of the Eu3+, Er3+ codoped ZnO quantum-dot chain via chemical precipitation method. Appl. Surf. Sci. 257, 9574–9577 (2011)

    Article  Google Scholar 

  32. G. Feng, F.W. Shu, J.Z. Meng, X. Dong, R.Y. Duo, Photoluminescence properties of SnO2 nanoparticles synthesized by sol–gel method. J. Phys. Chem. 108, 8119–8123 (2004)

    Google Scholar 

  33. P.G. Mendes, M.L. Moreira, S.M. Tebcherani, M.O. Orlandi, J. Andres, M.S. Li, N.D. Mora, J.A. Varela, E. Longo, SnO2 nanocrystals synthesized by microwave-assisted hydrothermal method: towards a relationship between structural and optical pr operties. J. Nanopart. Res. 14, 750–763 (2012)

    Article  Google Scholar 

  34. J.H. He, T.H. Wu, C.L. Hsin, K.M. Li, L.J. Chen, Y.L. Chueh, L.J. Chou, Z.L. Wang, Beaklike SnO2 nanorods with strong photoluminescent and field-emission properties. Small 2, 116–120 (2006)

    Article  Google Scholar 

  35. H.W. Kim, N.H. Kim, J.H. Myung, S.H. Shim, Characteristics of SnO2 fishbone-like nanostructures prepared by the thermal evaporation. Phys. Status Solidi A 202, 1758–1762 (2005)

    Article  Google Scholar 

  36. K. Srinivas, M. Vithal, B. Sreedhar, M. Manivel Raja, P. Venugopal Reddy, Structural, optical, and magnetic properties of nanocrystalline Co doped SnO2 based diluted magnetic semiconductors. J. Phys. Chem. C 113(2009), 3543–3552 (2009)

    Article  Google Scholar 

  37. H. Jiang, X.F. Liu, Z.Y. Zou, Z.B. Wu, B. He, R.H. Yu, The effect of surfactants on the magnetic and optical properties of Co-doped SnO2 nanoparticles. Appl. Surf. Sci. 258, 236 (2011)

    Article  Google Scholar 

  38. H.X. Wang, Y. Yan, Y.S. Mohammed, X.B. Du, K. Li, H. Jin, First-principle study of magnetism in Co-doped SnO2. J. Magn. Magn. Mater. 321, 337–342 (2009)

    Article  Google Scholar 

  39. J. Hays, A. Punnoose, R. Baldner, M.H. Engelhard, J. Peloquin, K.M. Reddy, Relationship between the structural and magnetic properties of Co- doped SnO2 nanoparticles. Phys. Rev. B 72, 075203 (2005)

    Article  Google Scholar 

  40. W. Chen, J. Li, Magnetic and electronic structure properties of Co-doped SnO2 nanoparticles synthesized by the sol- gel hydrothermal technique. J. Appl. Phys. 109, 083930 (2011)

    Article  Google Scholar 

  41. K. Nomura, J. Okabayashi, K. Okamura, Y. Yamada, Magnetic properties of Fe and Co codoped SnO2 prepared by sol- gel method. J. Appl. Phys. 110, 083901 (2011)

    Article  Google Scholar 

  42. P. Baraneedharan, C. Siva, K. Nehru, M. Sivakumar, Investigations on structural, optical and electrochemical properties of blue luminescence SnO2 nanoparticles. J. Mater. Sci.: Mater. Electron. 25, 255–261 (2014)

    Google Scholar 

  43. X. Ding, D. Zeng, C. Xie, Controlled growth of SnO2 nanorods clusters via Zn doping and its influence on gas-sensing properties. Sensors. Actuat B Chem. 149, 336–344 (2010)

    Article  Google Scholar 

  44. M.A.L. Margionte, A.Z. Simoes, C.S. Riccardi, F.M. Filho, A. Ries, L. Perazolli, J.A. Varela, WO3 and ZnO-doped SnO2 ceramics as insulating material. Ceram. Int. 32, 713–718 (2006)

    Article  Google Scholar 

  45. J.S. Bhat, K.I. Maddani, A.M. Karaguppikar, Influence of Zn doping on electrical and optical properties of multilayered tin oxide thin films. Bull. Mater. Sci. 29, 331–337 (2006)

    Article  Google Scholar 

  46. F.A. Kroger, H. Vink, Relations between the concentrations of imperfections in crystalline solids. Soli. State. Phys. 3, 307–435 (1956)

    Google Scholar 

  47. M. Matsuoka, Non-ohmic properties of zinc oxide ceramics. Jpn. J. Appl. Phys. 10, 736–746 (1971)

    Article  Google Scholar 

  48. A. Azam, A.S. Ahmad, M.S. Ansari, M. Shafeeq, M. Alim, H. Naqvi, Study of electrical properties of nickel doped SnO2 ceramic nanoparticles. J. Alloy. Comp. 506, 237–242 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The author PJS acknowledge the receipt of fellowship from TEQIP II, BIT campus. KN and MS acknowledge the CSIR for partial funding. One of the author, Dr. PB acknowledge CSIR- HRDG for proving support under Scientist Pool Scheme (No: 13(8778-A)/2015-Pool).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Nehru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sephra, P.J., Baraneedharan, P., Siva, C. et al. Microwave assisted synthesis of Sn(1−x)CoxO2 nanoparticles: effect of impurity phase formation on structural, optical and electrochemical properties. J Mater Sci: Mater Electron 27, 11401–11409 (2016). https://doi.org/10.1007/s10854-016-5266-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5266-y

Keywords

Navigation