Skip to main content
Log in

The electrical properties of low-temperature sintered PMN-PT electrostrictive ceramics by LiF modification

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

LiF was introduced into PMN-PT electrostrictive ceramics as a sintering aid to lower the firing temperature, and its influence on the electrical properties and microstructures were investigated. The sintering temperature was effectively shifted down by the addition of LiF, which could be attributed to the liquid phase sintering mechanism. Dense microstructures with facet grains were found in the modified compositions, where the existence of secondary phase was not detected. The LiF-doped samples showed the decreased T m , causing the enhanced relaxor behavior at room temperature, while the T m increased with the increasing PT content. Excellent electric field-induced strain performance of d * 33 (S max /E max ) ~ 526 pm/V (E = 1 kV/mm) with extremely low hysteresis ~3 % of SE curves was achieved in low-temperature sintered electrostrictive ceramics. This result makes the ceramics much attractive for applications in multilayer-structured actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic, London, 1971)

    Google Scholar 

  2. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)

    Article  Google Scholar 

  3. T. Stevenson, D.G. Martin, P.I. Cowin, A. Blumfield, A.J. Bell, T.P. Comyn, P.M. Weaver, J. Mater. Sci. Mater. Electron. 27, 606 (2015)

    Google Scholar 

  4. C.A. Randall, A.D. Hilton, D.J. Barber, T.R. Shrout, J. Mater. Res. 8, 880 (1993)

    Article  Google Scholar 

  5. S. Kwon, E.M. Sabolsky, G.L. Messing, J. Am. Ceram. Soc. 84, 648 (2001)

    Article  Google Scholar 

  6. A.S. Mischenko, Q. Zhang, R.W. Whatmore, J.F. Scott, N.D. Mathur, Appl. Phys. Lett. 89, 242912 (2006)

    Article  Google Scholar 

  7. F. Li, L. Jin, Z. Xu, D. Wang, S. Zhang, Appl. Phys. Lett. 102, 152910 (2013)

    Article  Google Scholar 

  8. J. Kuwata, K. Uchino, S. Nomura, Ferroelectrics 37, 579 (1981)

    Article  Google Scholar 

  9. S.E. Park, T.R. Shrout, J. Appl. Phys. 82, 1804 (1997)

    Article  Google Scholar 

  10. S.L. Swartz, T.R. Shrout, W.A. Schulze, L.E. Cross, J. Am. Ceram. Soc. 67, 311 (1984)

    Article  Google Scholar 

  11. J.K. Park, U.J. Chung, N.M. Hwang, D.Y. Kim, J. Am. Ceram. Soc. 84, 3057 (2001)

    Article  Google Scholar 

  12. Y. Sato, T. Hirayama, Y. Ikuhara, Appl. Phys. Lett. 104, 082905 (2014)

    Article  Google Scholar 

  13. V.V. Shvartsman, A.Y. Emelyanov, A.L. Kholkin, A. Safari, Appl. Phys. Lett. 81, 117 (2002)

    Article  Google Scholar 

  14. D. Damjanovic, Appl. Phys. Lett. 97, 062906 (2010)

    Article  Google Scholar 

  15. C.A. Randall, A. Kelnberger, G.Y. Yang, R.E. Eitel, T.R. Shrout, J. Electroceram. 14, 177 (2005)

    Article  Google Scholar 

  16. M. Promsawat, A. Watcharapasorn, H.N. Tailor, S. Jiansirisomboon, Z.G. Ye, J. Appl. Phys. 113, 204101 (2013)

    Article  Google Scholar 

  17. M. Promsawat, J.Y.Y. Wong, A. Watcharapasorn, S. Jiansirisomboon, Mater. Chem. Phys. 141, 549 (2013)

    Article  Google Scholar 

  18. W.G. Yang, B.P. Zhang, N. Ma, L. Zhao, J. Eur. Ceram. Soc. 32, 899 (2012)

    Article  Google Scholar 

  19. Y. Yan, K.H. Cho, S. Priya, J. Am. Ceram. Soc. 94, 3953 (2011)

    Article  Google Scholar 

  20. A.A. Bokov, Z.-G. Ye, J. Mater. Sci. 41, 31–52 (2006)

    Article  Google Scholar 

  21. Q. Zhang, W. Pan, A. Bhalla, L.E. Cross, J. Am. Ceram. Soc. 72, 599 (1989)

    Article  Google Scholar 

  22. W. Ren, A.J. Masys, G. Yang, B.K. Mukherjee, J. Phys. D Appl. Phys. 35, 1550 (2002)

    Article  Google Scholar 

  23. H.L. Li, Y. Zhang, J.J. Zhou, X.W. Zhang, H. Liu, J.Z. Fang, Ceram. Int. 41, 4822 (2015)

    Article  Google Scholar 

  24. L. Wang, C. Mao, G. Wang, G. Du, R. Liang, X. Dong, J. Am. Ceram. Soc. 96, 24 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Nature Science Foundation of China (Grant No. 51402297) and West Light Foundation of the Chinese Academy of Sciences (A14K001), as well as by Youth Innovation Promotion Association CAS. We are grateful to Professor Xiao-Wen Zhang (Tsinghua University) for his helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Jun Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, XY., Zhou, JJ., Liu, H. et al. The electrical properties of low-temperature sintered PMN-PT electrostrictive ceramics by LiF modification. J Mater Sci: Mater Electron 27, 10729–10734 (2016). https://doi.org/10.1007/s10854-016-5174-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5174-1

Keywords

Navigation