Skip to main content
Log in

Facile hydrothermal synthesis NiHPO3·H2O nanorods, influencing factors, and transformation toward Ni–NiO composite nanostructures, catalytic properties and application in sensing for glucose

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We designed a direct and simple route, based on a thermal decomposition method under normal atmospheric pressure for obtained Ni–NiO nanorods from NiHPO3·H2O nanorods structures, the uniform precursor. This process includes the synthesis of the precursor through a facile hydrothermal approach and subsequently thermal decomposition of the precursor under air atmosphere. Some factors influencing the precursor of the NiHPO3·H2O nanorods structures were systematically investigated. After the heat treatment, the as-synthesized Ni–NiO nanorods with a well retained structure and the catalytic performance were investigated. It was found that the Ni–NiO nanorods exhibited good catalytic activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in excess NaBH4 solution. Furthermore, experiments showed that the as-prepared Ni–NiO nanorods presented high electrochemical response with low detection limit (0.254 μM), wide linear range (0.25–1.75 mM) (R2 = 0.99918) and high selectivity in 0.1 mol L−1 NaOH solution and could be used as an electrochemical sensor for the detection of glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Q. Wang, Y.P. Xia, C.L. Jiang, CrystEngComm 16, 9721 (2014)

    Article  Google Scholar 

  2. M.E. Davis, Nature 417, 813 (2002)

    Article  Google Scholar 

  3. Y.S. Hu, Y.G. Guo, W. Sigle, S. Hore, P. Balaya, J. Maier, Nat. Mater. 5, 713 (2006)

    Article  Google Scholar 

  4. A. Corma, Chem. Rev. 97, 2373 (1997)

    Article  Google Scholar 

  5. L.G. Teoh, Y.M. Hon, J. Shieh, W.H. Lai, M.H. Hon, Actuators B 96, 219 (2003)

    Article  Google Scholar 

  6. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W.V. Schalkwijk, Nat. Mater. 4, 366 (2005)

    Article  Google Scholar 

  7. J.S. Hu, L.L. Ren, Y.G. Guo, H.P. Liang, A.M. Cao, L.J. Wan, C.L. Bai, Angew. Chem. Int. Ed. 44, 1269 (2005)

    Article  Google Scholar 

  8. A. Afkhami, H. Khoshsafar, H. Bagheri, T. Madrakian, Anal. Chim. Acta 831, 50 (2014)

    Article  Google Scholar 

  9. I. Zafiropoulou, K. Papagelis, N. Boukos, A. Siokou, D. Niarchos, V. Tzitzios, J. Phys. Chem. C 114, 7582 (2010)

    Article  Google Scholar 

  10. Y.H. Ni, L.N. Jin, L. Zhang, J.M. Hong, J. Mater. Chem. 20, 6430 (2010)

    Article  Google Scholar 

  11. F.F. Yuan, Y.H. Ni, L. Zhang, S.M. Yuan, J.D. Wei, J. Mater. Chem. A 1, 8438 (2013)

    Article  Google Scholar 

  12. Y. Lu, J.P. Tu, Q.Q. Xiong, Y.Q. Qiao, J. Zhang, C.D. Gu, X.L. Wang, S.X. Mao, Chem. Eur. J. 18, 6031 (2012)

    Article  Google Scholar 

  13. Y.H. Hu, E. Ruckenstein, Langmuir 13, 2055 (1997)

    Article  Google Scholar 

  14. Y. Liu, L. Zhang, Q. Guo, H. Hou, T. You, Anal. Chim. Acta 663, 153 (2010)

    Article  Google Scholar 

  15. M.L. Singla, A. Negi, V. Mahajan, K.C. Singh, D.V.S. Jain, Appl. Catal. A 323, 51 (2007)

    Article  Google Scholar 

  16. K.B. Lee, S. Park, C.A. Mirkin, Angew. Chem. Int. Ed. 43, 3048 (2004)

    Article  Google Scholar 

  17. M.M. Natile, A. Glisenti, Chem. Mater. 15, 2502 (2003)

    Article  Google Scholar 

  18. E. Ruckenstein, Y.H. Hu, Appl. Catal. A 133, 149 (1995)

    Article  Google Scholar 

  19. B. Varghese, M.V. Reddy, Z. Yanwu, C.S. Lit, T.C. Hoong, G.V. Subba Rao, B.V.R. Chowdari, A.T.S. Wee, C.T. Lim, C.H. Sow, Chem. Mater. 20, 3360 (2008)

    Article  Google Scholar 

  20. X. Wang, Z. Yang, X. Sun, X. Li, D. Wang, P. Wang, D. He, J. Mater. Chem. 21, 9988 (2011)

    Article  Google Scholar 

  21. M.S. Wu, Y.P. Lin, C.H. Lin, J.T. Lee, J. Mater. Chem. 22, 2442 (2012)

    Article  Google Scholar 

  22. M. Hasan, S.B. Newcomb, K.M. Razeeb, J. Electrochem. Soc. 159, 203 (2012)

    Article  Google Scholar 

  23. J. Peng, Y. Li, P.Y. Ji, L.P. Jiang, J.J. Zhu, Chin. J. Inorg. Chem. 28, 1251 (2012)

    Google Scholar 

  24. S.L. Zheng, M.L. Tong, X.M. Chen, Coord. Chem. Rev. 246, 185 (2003)

    Article  Google Scholar 

  25. L. Zhang, Y.H. Ni, K.M. Liao, X.W. Wei, Cryst. Growth Des. 8, 3636 (2008)

    Article  Google Scholar 

  26. S. Harish, J. Mathiyarasu, K.L.N. Phani, V. Yegnaraman, Catal. Lett. 128, 197 (2009)

    Article  Google Scholar 

  27. Z.Z. Cui, H.Y. Yin, Q.L. Nie, J. Alloys Compd. 632, 402 (2015)

    Article  Google Scholar 

  28. Lu Pan, Yu. Jie, Yuting Lei, Lu Shengjun, Caihong Wang, Dianxin Liu, Qiancheng Guo. Sens. Actuators B 208, 90 (2015)

    Article  Google Scholar 

  29. A.H. Wei, B. Liu, H. Zhao, Y. Chen, W.L. Wang, Y. Ma, H.Q. Yang, S.Z. Li, Chem. Eng. J. 239, 141 (2014)

    Article  Google Scholar 

  30. L. Zheng, J.Q. Zhang, J.F. Song, Electrochim. Acta 54, 4559 (2009)

    Article  Google Scholar 

  31. R.A. Soomro, Z.H. Ibupoto, M. Sirajuddin, I. Abro, M. Willander, Sens. Actuators B 209, 966 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Key projects of the Education Department of Anhui Province (No. KJ2015A271); Anhui Provincial Project of Outstanding Young Talents Fund in Universities (No. gxyqZD2016342); the Opening Project of Anhui Key Laboratory of Spin Electron and Nanomaterials (Nos. 2013YKF22, 2014YKF45).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Geng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, T., Zhou, X. & Wu, H. Facile hydrothermal synthesis NiHPO3·H2O nanorods, influencing factors, and transformation toward Ni–NiO composite nanostructures, catalytic properties and application in sensing for glucose. J Mater Sci: Mater Electron 27, 8416–8427 (2016). https://doi.org/10.1007/s10854-016-4854-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4854-1

Keywords

Navigation