Skip to main content
Log in

Synthesis and analysis of electron density distribution in Ba1−xSrxTiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Ba1−xSrxTiO3 perovskites (abbreviated as BST, x = 0.2, 0.4 and 0.6) have been synthesized by high temperature solid state reaction technique. The influences of Sr doping on the morphology, electron density distribution and optical properties at the lattice sites of BaTiO3 have been investigated by X-ray diffraction, scanning electron microscopy and UV–visible spectroscopy. With the increase in Sr content, the lattice parameter, cell volume, density and the grain sizes are found to be reduced. The incorporation of Sr content into the BaTiO3 lattice decreases the ionic nature of the bonding between Ti and O ions and increases ionic nature between Ba and O ions and the energy gap measurements indicate the reduction in insulating property of the grown samples. The stoichiometry of the samples was further confirmed by energy dispersive X-ray spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z.C. Li, B. Bergman, J. Eur. Ceram. Chem. Soc. 25, 441–444 (2005)

    Article  Google Scholar 

  2. V. Paunovic, L.J. Zivkovic, V. Mitic, Sci. Sinter. 42, 69–79 (2010)

    Article  Google Scholar 

  3. H. Xue, Z. Xiong, J. Alloys Compd. 467, 338–341 (2009)

    Article  Google Scholar 

  4. Z. Feng, M.W. Fathebab, P.G. Lam, V. Haridasan, J.-P. Maria, A.I. Kingon, B. Michel, in Steer, 978-1-4244-2804-5/09/ (IEEE, 2009)

  5. B. Wodecka-Dus, A. Lisinsk-Czekaj, T. Orkisz, M. Adamczyk, K. Osinska, L. Kozielski, D. Czekaj, Mater. Sci. Pol. 25(3), 791–799 (2007)

    Google Scholar 

  6. X.M. Chen, T. Wang, J. Li, Mater. Sci. Eng. B 113, 117–120 (2004)

    Article  Google Scholar 

  7. S. Fuentes, E. Chávez, L. Padilla-Campo, D.E. Diaz-Droguett, Ceram. Int. 39, 8823–8831 (2013)

    Article  Google Scholar 

  8. J. Hou, Z. Zhang, W. Preis, W. Sitte, G. Dehm, J. Eur. Ceram. Soc. 31, 763–771 (2011)

    Article  Google Scholar 

  9. E. Orhan, F.M. Pontes, C.D. Pinheiro, E. Longo, P.S. Pizani, J.A. Varela, E.R. Leite, T.M. Boschi, A. Beltr´an, J. Andr´es, J. Eur. Ceram. Soc. 25, 2337–2340 (2005)

    Article  Google Scholar 

  10. Z. Guangzu, Y.I. Jinqiao, J. Shenglin, Y. Yan, H.E. Jungang, L. Sisi, Z. Dingyang, Z. Ling, http://www.paper.edu.cn

  11. H. Muta, K. Kurosaki, S. Yamanaka, J. Alloys Compd. 368, 22–24 (2004)

    Article  Google Scholar 

  12. H.W. Wang, Tamkang J. Sci. Eng. 5(2), 113–116 (2002)

    Google Scholar 

  13. S. Wang, Y. Hsu, H. Huang, Y. Liu, Ceram. Int. 37, 1327–1331 (2011)

    Article  Google Scholar 

  14. L.C. Sengupta, E. Ngo, J. Synowczynski, S. Sengupta, IEEE 2, 845–849 (1996)

    Google Scholar 

  15. N. Vittayakorn, J. Appl. Sci. Res. 2(12), 1319–1322 (2006)

    Google Scholar 

  16. W. Li, Z. Xu, R. Chu, P. Fu, J. Hao, J. Alloys Compd. 499, 255–258 (2010)

    Article  Google Scholar 

  17. M. Sindhu, N. Ahlawat, S. Sanghi, R. Kumari, A. Agarwal, J. Alloys Compd. 575, 109–114 (2013)

    Article  Google Scholar 

  18. J.J. Wang, F.Y. Meng, X.Q. Ma, M.X. Xu, L.Q. Chen, J. Appl. Phys. 108, 034107 (2010). doi:10.1063/1.3462441

    Article  Google Scholar 

  19. R. Khenata, M. Sahnoun, H. Baltache, M. Renat, A.H. Rashek, N. Illes, B. Bouhafs, Solid State Commun. 136, 120–125 (2005)

    Article  Google Scholar 

  20. H.M. Rietveld, J. Appl. Crystallogr. 2, 65–71 (1969)

    Article  Google Scholar 

  21. D.M. Collins, Nature 49, 298 (1982)

    Google Scholar 

  22. J. Harada, M. Sakata, Y. Akishige, K. Yugami, T. Nakata, H. Tanakac, E. Nishibori, Y. Kuroiwa, M. Takata, Adv. X-Ray Anal. 44, 6–11 (2001)

  23. V. Berbenni, A. Marini, Z. Naturforsch. 57B, 859–864 (2002)

    Google Scholar 

  24. N.J. Ridha, W.M.M. Yunus, S.A. Halim, Z.A. Talib, F.K. Mohamad Al-Asfoor, W.C. Primus, Am. J. Eng. Appl. Sci. 2(4), 661–664 (2009)

    Article  Google Scholar 

  25. V. Petricek, M. Dusek, L. Palatinus, The Crystallographic Computing System JANA 2006 (Institute of Physics, Academy of Sciences of the Czech Republic, Praha, 2000)

    Google Scholar 

  26. R.W.G. Wyckoff, Crystal structures, vol. 1 (Inter-space publishers, London, 1963)

    Google Scholar 

  27. G. Caruntru, R. Rarig Jr., I. Dumitru, C.J. O’Connor, J. Mater. Chem. 16, 752–758 (2006)

  28. R. Saravanan, Grain software (Private communication) (2008)

  29. R. Balachandran, H.K. Yow, B.H. Ong, K. Anuar, W.T. Teoh, K.B. Tan, in ICSE2008 Proceedings, Johor Bahru, Malaysia (2008)

  30. A.D. Ruben, F. Izumi, Super-fast Program PRIMA for the Maximum-Entropy Method, Advanced Materials Laboratory (National institute for materials science, Tsukuba, Ibaraki, 2004)

    Google Scholar 

  31. K. Momma, F. Izumi, J. Appl. Crystallogr. 41, 653 (2008)

    Article  Google Scholar 

  32. www.webelements.com/barium/electronegativity.html

  33. S. Suasmoro, S. Pratapa, D. Hartanto, D. Setyoko, U.M. Dani, J. Eur. Ceram. Soc. 20, 309–314 (2000)

    Article  Google Scholar 

  34. P. Pookmanee, S. Phanichphant, J. Ceram. Process. Res. 11(3), 384–387 (2010)

    Google Scholar 

  35. J. Tauc, R. Grigorvici, Y. Yanca, Phys. Status Solidi 15, 627–637 (1966)

    Article  Google Scholar 

  36. I.A. Souza, M.F.C. Gurgel, L.P.S. Santos, M.S. Goes, S. Cava, M. Cilense, I.L.V. Rosa, C.O. Paiva-Santos, E. Longo, Chem. Phys. 322, 343–348 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mangaiyarkkarasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanan, R., Mangaiyarkkarasi, J. Synthesis and analysis of electron density distribution in Ba1−xSrxTiO3 ceramics. J Mater Sci: Mater Electron 27, 2523–2533 (2016). https://doi.org/10.1007/s10854-015-4053-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4053-5

Keywords

Navigation