Skip to main content
Log in

MOVPE growth of in situ Ga catalyzed AlGaAs nanowires on sapphire substrate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Growth of single crystalline AlGaAs nanostructures was carried out on highly lattice mismatched sapphire substrate by metal organic vapor phase epitaxy technique without using any external catalyst. In situ deposited Ga droplets were used as catalyst for the growth of AlGaAs nanostructures. The effects of growth temperature and V/III ratio were studied in detail. The growth of nanowires required a careful optimization of the growth conditions. The formation of well-faceted nanostructures and nanowires with hexagonal cross-section were found to be influenced by the growth parameters. The growth of nanostructures proceeds via VS growth mechanism after the consumption of initial Ga droplets depending on the growth conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B.M. Kayes, H.A. Atwater, N.S. Lewis, J. Appl. Phys. 97, 114302 (2005)

    Article  Google Scholar 

  2. M. Yao, N. Huang, S. Cong, C.-Y. Chi, M.A. Seyedi, Y.-T. Lin, Y. Cao, M.L. Povinelli, P.D. Dapkus, C. Zhou, Nano Lett. 14, 3293 (2014)

    Article  Google Scholar 

  3. P. Parkinson, Y.-H. Lee, L. Fu, S. Breuer, H.H. Tan, C. Jagadish, Nano Lett. 13, 1405 (2013)

    Google Scholar 

  4. K. Tomioka, J. Motohisa, S. Hara, K. Hiruma, T. Fukui, Nano Lett. 10, 1639 (2010)

    Article  Google Scholar 

  5. J. Ho, J. Tatebayashi, S. Sergent, C.F. Fong, S. Iwamoto, Y. Arakawa, ACS Photonics 2, 165 (2015)

    Article  Google Scholar 

  6. B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, J.J. Finley, Nat. Commun. 4, 2931 (2013)

    Article  Google Scholar 

  7. S.K. Lim, M.J. Tambe, M.M. Brewster, S. Gradecak, Nano Lett. 8, 1386 (2008)

    Article  Google Scholar 

  8. M.J. Tambe, S.K. Lim, M.J. Smith, L.F. Allard, S. Gradečak, Appl. Phys. Lett. 93, 151917 (2008)

    Article  Google Scholar 

  9. J.W. Matthews, A.E. Blakeslee, J. Cryst. Growth 27, 118 (1974)

    Google Scholar 

  10. W. Lu, C.M. Lieber, Nat. Mater. 6, 841 (2007)

    Article  Google Scholar 

  11. P.J. Pauzauskie, P. Yang, Mater. Today 9, 36 (2006)

    Article  Google Scholar 

  12. B.J. Ohlsson, M.T. Björk, M.H. Magnusson, K. Deppert, L. Samuelson, L.R. Wallenberg, Appl. Phys. Lett. 79, 3335 (2001)

    Article  Google Scholar 

  13. F. Glas, Phys. Rev. B 74, 121302(R) (2006)

    Article  Google Scholar 

  14. L.C. Chuang, M. Moewe, S. Crankshaw, C. Chang-Hasnain, Appl. Phys. Lett. 92, 013121 (2008)

    Article  Google Scholar 

  15. G.E. Cirlin, V.G. Dubrovskii, I.P. Soshnikov, N.V. Sibirev, Y.B. Samsonenko, A.D. Bouravleuv, J.C. Harmand, F. Glas, Phys. Status Solidi (RRL) 3, 112 (2009)

    Article  Google Scholar 

  16. M. Wei, J. Zhang, D.M. Fryauf, J.J.D. Leon, K.J. Norris, H. Deng, G. Wen, S.-Y. Wang, N.P. Kobayashi, J. Mater. Sci.: Mater. Electron. 25, 4444 (2014)

    Google Scholar 

  17. H. Liang, Q. Feng, X. Xia, R. Li, H. Guo, K. Xu, P. Tao, Y. Chen, G. Du, J. Mater. Sci.: Mater. Electron. 25, 1955 (2014)

    Google Scholar 

  18. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)

    Article  Google Scholar 

  19. T.I. Kamins, R.S. Williams, D.P. Basile, T. Hesjedal, J.S. Harris, J. Appl. Phys. 89, 1008 (2001)

    Article  Google Scholar 

  20. A.I. Persson, M.W. Larsson, S. Stenstrom, B.J. Ohlsson, L. Samuelson, L.R. Wallenberg, Nat. Mater. 3, 677 (2004)

    Article  Google Scholar 

  21. J.E. Allen, E.R. Hemsath, D.E. Perea, J.L. Lensch-Falk, Z.Y. Li, F. Yin, M.H. Gass, P. Wang, A.L. Bleloch, R.E. Palmer, L.J. Lauhon, Nat. Nanotechnol. 3, 168 (2008)

    Article  Google Scholar 

  22. S. Breuer, C. Pfüller, T. Flissikowski, O. Brandt, H.T. Grahn, L. Geelhaar, H. Riechert, Nano Lett. 11, 1276 (2011)

    Article  Google Scholar 

  23. M. Moewe, L.C. Chuang, S. Crankshaw, C. Chase, C. Chang-Hasnain, Appl. Phys. Lett. 93, 023116 (2008)

    Article  Google Scholar 

  24. L.C. Chuang, M. Moewe, K.W. Ng, T.D. Tran, S. Crankshaw, R. Chen, W.S. Ko, C. Chang-Hasnain, Appl. Phys. Lett. 98, 123101 (2011)

    Article  Google Scholar 

  25. A. Mooradian, G.B. Wright, Solid State Commun. 4, 431 (1966)

    Article  Google Scholar 

  26. Z.R. Wasilewski, M.N. Dion, D.J. Lockwood, P. Poole, R.W. Streater, A.J. SpringThorpe, J. Appl. Phys. 81, 1683 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the characterization division of SSPL for FESEM, XRD, micro-PL and micro-Raman measurements. The authors also wish to thank Director, Solid State Physics Laboratory, for his constant support, encouragement and permission to publish the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh K. Bag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bag, R.K., Lohani, J., Tyagi, R. et al. MOVPE growth of in situ Ga catalyzed AlGaAs nanowires on sapphire substrate. J Mater Sci: Mater Electron 27, 2335–2341 (2016). https://doi.org/10.1007/s10854-015-4030-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4030-z

Keywords

Navigation