Skip to main content
Log in

The characterization of AlGaN nanowires prepared via chemical vapor deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

AlGaN ternary alloys exhibit some superior properties due to their tunable direct band gap and make them widely used in the fabrication of electronic and optoelectronic devices. Here, we successfully synthesized AlGaN nanowires by chemical vapor deposition using Al powder, Ga droplet and ammonia as starting materials with Pd as catalyst under a moderate growth temperature. The role of Pd catalyst during the growth has been systematically studied. We found that not only the Pd catalyst is the key to the growth of AlGaN nanowires in large scale, but also the sizes of catalyst nanoparticles have an important effect on diameter distribution of nanowires. XRD and HRTEM measurements confirmed that the synthesized AlGaN nanowires are the wurtzite structure and grown along [001] direction. The growth time and ammonia flow have important influence on the morphology of the AlGaN nanostructures. Based on the evolution of the nanostructures, we verified that the growth of the AlGaN nanostructures are affected by both VLS and VS mechanism and explained the growth process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Zhao et al., An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band. Appl. Phys. Lett. 107, 043101 (2015). https://doi.org/10.1063/1.4927602

    Article  Google Scholar 

  2. B. Albrecht et al., AlGaN ultraviolet A and ultraviolet C photodetectors with very high specific detectivity D*. Jpn. J. Appl. Phys. 52(8), 08JB28 (2013). https://doi.org/10.7567/JJAP.52.08JB28

    Article  Google Scholar 

  3. E. Song et al., Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires. Nanotechnology. 27(1), 015204 (2016). https://doi.org/10.1088/0957-4484/27/1/015204

    Article  Google Scholar 

  4. M. Djavid, Z. Mi, Enhancing the light extraction efficiency of AlGaN deep ultraviolet light emitting diodes by using nanowire structures. Appl. Phys. Lett. 108(5), 051102 (2016). https://doi.org/10.1063/1.4941239

    Article  Google Scholar 

  5. K. Zhang et al., High-linearity AlGaN/GaN FinFETs for microwave power applications. IEEE Electron Device Lett. 38(5), 615–618 (2017). https://doi.org/10.1109/LED.2017.2687440

    Article  Google Scholar 

  6. B. Albrecht et al., Improved AlGaN p-i-n photodetectors for monitoring of ultraviolet radiation. IEEE J. Sel. Top. Quantum Electron. 20(6), 166–172 (2014). https://doi.org/10.1109/JSTQE.2014.2326251

    Article  Google Scholar 

  7. B.H. Le et al., Controlled coalescence of AlGaN nanowire arrays: an architecture for nearly dislocation-free planar ultraviolet photonic device applications. Adv. Mater. 28(38), 8446–8454 (2016). https://doi.org/10.1002/adma.201602645

    Article  Google Scholar 

  8. P. Pittet et al., PL characterization of GaN scintillator for radioluminescence-based dosimetry. Opt. Mater. 31(10), 1421–1424 (2009). https://doi.org/10.1016/j.optmat.2008.09.012

    Article  Google Scholar 

  9. A. Pansari, V. Gedam, B. Kumar Sahoo, Built-in-polarization field effect on lattice thermal conductivity of AlxGa1–xN/GaN heterostructure. J. Phys. Chem. Solids 87, 177–182 (2015). https://doi.org/10.1016/j.jpcs.2015.08.019

    Article  Google Scholar 

  10. P.K. Kuo, G.W. Auner, Z.L. Wu, Microstructure and thermal conductivity of epitaxial AlN thin films. Thin Solid Films 253(1–2), 223–227 (1994). https://doi.org/10.1016/0040-6090(94)90324-7

    Article  Google Scholar 

  11. O. Ambacher et al., Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85(6), 3222–3233 (1999). https://doi.org/10.1063/1.369664

    Article  Google Scholar 

  12. X. Li, J. Ni, R. Zhang, A thermodynamic model of diameter- and temperature-dependent semiconductor nanowire growth. Sci. Rep. 7(1), 15029 (2017). https://doi.org/10.1038/s41598-017-15077-2

    Article  Google Scholar 

  13. R. Calarco et al., Size-dependent photoconductivity in MBE-grown GaN − nanowires. Nano Lett. 5(5), 981–984 (2005). https://doi.org/10.1021/nl0500306

    Article  Google Scholar 

  14. S. Zhao, Y.M. Woo, M. Bugnet et al., Three-dimensional quantum confinement of charge carriers in self-organized AlGaN nanowires: a viable route to electrically injected deep ultraviolet lasers. Nano Lett. 15(12), 7801–7807 (2015). https://doi.org/10.1021/acs.nanolett.5b02133

    Article  Google Scholar 

  15. R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964). https://doi.org/10.1063/1.1753975

    Article  Google Scholar 

  16. B.A. Wacaser et al., Preferential interface nucleation: an expansion of the VLS growth mechanism for nanowires. Adv. Mater. 21(2), 153–165 (2009). https://doi.org/10.1002/adma.200800440

    Article  Google Scholar 

  17. H. Wang, G.S. Fischman, Role of liquid droplet surface diffusion in the vapor-liquid-solid whisker growth mechanism. J. Appl. Phys. 76(3), 1557–1562 (1994). https://doi.org/10.1063/1.358515

    Article  Google Scholar 

  18. Z.H. Lan et al., Nanohomojunction (GaN) and nanoheterojunction (InN) Nanorods on one-dimensional GaN nanowire substrates. Adv. Funct. Mater. 14(3), 233–237 (2004). https://doi.org/10.1002/adfm.200304403

    Article  Google Scholar 

  19. J. Su et al., Growth of AlGaN nanowires by metalorganic chemical vapor deposition. Appl. Phys. Lett. 87(18), 183108 (2005). https://doi.org/10.1063/1.2126113

    Article  Google Scholar 

  20. A. Pierret et al., Growth, structural and optical properties of AlGaN nanowires in the whole composition range. Nanotechnology. 24(11), 115704 (2013). https://doi.org/10.1088/0957-4484/24/11/115704

    Article  Google Scholar 

  21. A.K. Sivadasan et al., Optical properties of monodispersed AlGaN nanowires in the single-prong growth mechanism. Cryst. Growth Des. 15(3), 1311–1318 (2015). https://doi.org/10.1021/cg501723n

    Article  Google Scholar 

  22. H.K. Seong et al., Single-crystalline AlGaN: Mn nanotubes and their magnetism. Adv. Mater. 18(22), 3019–3023 (2006). https://doi.org/10.1002/adma.200600933

    Article  Google Scholar 

  23. L. Lari et al., Direct observation by transmission electron microscopy of the influence of Ni catalyst-seeds on the growth of GaN–AlGaN axial heterostructure nanowires. J. Cryst. Growth 327(1), 27–34 (2011). https://doi.org/10.1016/j.jcrysgro.2011.06.004

    Article  Google Scholar 

  24. L. Lari et al., Nanoscale compositional analysis of Ni-based seed crystallites associated with GaN nanowire growth. Physica E 40(7), 2457–2461 (2008). https://doi.org/10.1016/j.physe.2007.10.003

    Article  Google Scholar 

  25. V.K. Lazarov, GaN, AlGaN, HfO2 based radial heterostructure nanowires. J. Phys. 209, 012011 (2010). https://doi.org/10.1088/1742-6596/209/1/012011

    Google Scholar 

  26. R.J. Jiang, X.Q. Meng, Synthesis of aluminum nitride nanostructures via chemical vapor deposition method with nickel as catalyst. Revista Mexicana de Fisica 64(1), 67–71 (2018). https://doi.org/10.31349/RevMexFis.64.67

    Article  Google Scholar 

  27. C. He et al., Growth and characterization of ternary AlGaN alloy nanocones across the entire composition range. ACS Nano 5(2), 1291–1296 (2011). https://doi.org/10.1021/nn1029845

    Article  Google Scholar 

  28. V. Thakur, S.M. Shivaprasad, Electronic structure of GaN nanowall network analysed by XPS. Appl. Surf. Sci. 327, 389–393 (2015). https://doi.org/10.1016/j.apsusc.2014.11.082

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China under Grant (No. U1631110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianquan Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, R., Meng, X. The characterization of AlGaN nanowires prepared via chemical vapor deposition. J Mater Sci: Mater Electron 30, 16266–16274 (2019). https://doi.org/10.1007/s10854-019-01997-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01997-4

Navigation