Skip to main content
Log in

Comparison of AIN Nanowire-Like Structures Grown by using Mixed-Source Hydride Vapor Phase Epitaxy Method

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Four AlN nanowire-like structures were simultaneously grown directly without a buffer layer on four substrates-sapphire, quartz, Si(111), and 6H-SiC-via a mixed-source hydride vapor phase epitaxy (HVPE) method using a mixed source (Al+Ga) containing a small quantity of Ga at 1150 °C for 2 h. Deposition was carried out using a simplified reactor designed in series without any separation between the source and the growth zones. AlN nanostructures with hexagonal crystal structures were grown successfully and directly on thin, pre-grown AlN nucleation areas on the quartz substrates. Furthermore, AlN nanostructures were grown on the sapphire substrate without a buffer layer and on pre-grown epilayers on the Si (111) and the 6H-SiC substrates, respectively. The characteristics of the AlN nanowire-like structures grown on the four substrates were investigated using energy-dispersive X-ray spectrometry and field-emission scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992).

    Article  Google Scholar 

  2. J. R. LaRoche C-C. Pan and J-I. Chyi et al., Solid-State Electron. 48, 193 (2004).

    Article  ADS  Google Scholar 

  3. K. H. Kim et al., Appl. Phys. Lett. 85, 4777 (2004).

    Article  ADS  Google Scholar 

  4. Y. Zhang et al., Appl. Phys. Lett. 102, 011106 (2013).

    Article  ADS  Google Scholar 

  5. S. Lee, Y. Lee and D. Y. Kim, J. Korean Phys. Soc. 62, 518 (2013).

    Article  ADS  Google Scholar 

  6. Y. E. Z. Hao et al., Nanoscale Res Lett. 10, 383 (2015).

    Article  ADS  Google Scholar 

  7. S. Kitagawa, H. Miyake and K. Hiramatsu, Jpn. J. Appl. Phys. 53, 05FL03 (2014).

    Article  Google Scholar 

  8. Y. E. Z. Hao et al., Appl. Phys. Lett. 104, 223107 (2014).

    Article  ADS  Google Scholar 

  9. Y. Ma et al., Adv. Opt. Photon. 5, 216 (2013).

    Article  Google Scholar 

  10. Y. J. Dong, B. Z. Tian, T. J. Kempa and C. M. Lieber, Nano Lett. 9, 2183 (2009).

    Article  ADS  Google Scholar 

  11. D. Walker et al., Appl. Phys. Lett. 68, 2100 (1996).

    Article  ADS  Google Scholar 

  12. R. McClintock et al., Appl. Phys. Lett. 84, 1248 (2004).

    Article  ADS  Google Scholar 

  13. T. Takano, Y. Narita, A. Horiuchi and H. Kawanishi, Appl. Phys. Lett. 84, 3567 (2004).

    Article  ADS  Google Scholar 

  14. S. Arafin, X. Liu and Z. Mi, J. Nanophotonics 7, 074599 (2013).

    Article  ADS  Google Scholar 

  15. K. Maier et al., Sens. Actuators B 197, 87 (2014).

    Article  Google Scholar 

  16. M. J. Holmes et al., Nano Lett. 14, 982 (2014).

    Article  ADS  Google Scholar 

  17. Q. Wang et al., Nanotechnology 24, 345201 (2013).

    Article  ADS  Google Scholar 

  18. D. Martin et al., Phys. Status. Solidi A 194, 520 (2002).

    Article  ADS  Google Scholar 

  19. T. Hashimoto, F. Wu, J. S. Speck and S. Nakamura, Nat. Mater. 6, 568 (2007).

    Article  Google Scholar 

  20. K. M. Taylor and C. Lenie, J. Electrochem. Soc. 107, 308 (1960).

    Article  Google Scholar 

  21. G. A. Slack and T. F. McNelly, J. Cryst. Growth 42, 560 (1977).

    Article  ADS  Google Scholar 

  22. J. C. Rojo et al., J. Cryst. Growth 231, 317 (2001).

    Article  ADS  Google Scholar 

  23. K. Hiramatsu et al., J. Cryst. Growth 115, 628 (1991).

    Article  ADS  Google Scholar 

  24. Y. Kumagai, T. Yamane and A. Koukitu, J. Cryst. Growth 281, 62 (2005).

    Article  ADS  Google Scholar 

  25. A. Dadgar et al., J. Cryst. Growth 297, 306 (2006).

    Article  ADS  Google Scholar 

  26. Y. Kumagai, T. Nagashima and A. Koukitu, Jpn. J. Appl. Phys. 46, L389 (2007).

    Article  ADS  Google Scholar 

  27. G. S. Lee et al., Jpn. J. Appl. Phys. 51, 01AG06 (2012).

    Article  Google Scholar 

  28. H. Jeon et al., J. Korean Phys. Soc. 67, 643 (2015).

    Article  ADS  Google Scholar 

  29. C. Xu, L. Xue, C. Yin and G. Wang, Phys. Status. Solidi A 198, 329 (2003).

    Article  ADS  Google Scholar 

  30. J-R. Kim et al., Nanotechnology 13, 701 (2002).

    Article  ADS  Google Scholar 

  31. T. Kuykendall et al., Nano Lett. 3, 1063 (2003).

    Article  ADS  Google Scholar 

  32. H. Zhong, F. Qian, D. Wang and C. M. Lieber, Nano Lett. 3, 343 (2003).

    Article  ADS  Google Scholar 

  33. S. Han et al., Chem. Phys. Lett. 389, 176 (2004).

    Article  ADS  Google Scholar 

  34. V. Cimalla et al., Phys. Status. Solidi B 243, 1476 (2006).

    Article  ADS  Google Scholar 

  35. F. G. Tarntair et al., Appl. Phys. Lett. 76, 1 (2000).

    Article  Google Scholar 

  36. J. Yang et al., Nanotechnology 17, S321 (2006).

    Article  ADS  Google Scholar 

  37. L. C. Chen et al., J. Phys. Chem. Solids 62, 1567 (2001).

    Article  ADS  Google Scholar 

  38. G. S. Lee et al., Jpn. J. Appl. Phys. 55, 05FC02 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A3B03035999).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyung Soo Ahn or Suck-Whan Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.H., Lee, G.S., Ahn, H.S. et al. Comparison of AIN Nanowire-Like Structures Grown by using Mixed-Source Hydride Vapor Phase Epitaxy Method. J. Korean Phys. Soc. 75, 242–247 (2019). https://doi.org/10.3938/jkps.75.242

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.75.242

Keywords

Navigation