Skip to main content
Log in

Degeneration of mechanical characteristics and performances with Zr nanoparticles inserted in Bi-2223 superconducting matrix and increment in dislocation movement and cracks propagation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study explains the role of Zr concentration level on mechanical characteristics and performance belonging to the bulk Bi-2223 superconducting materials by means of standard Vickers microhardness (H v ) measurements at different applied loads in the range of 0.245–2.940 N and evaluated theoretical calculations. The experimental measurement results obtained display that the mechanical performances regress with the increment of the Zr addition level due to the increased artificial disorders/damages/breaks/voids/cracks and irregular grain orientation distribution. In other words, the Zr addition accelerates both the dislocation movement and especially the cracks/voids propagation of as a consequence of the decrement in the Griffith critical crack length, being one of the most striking points deduced from this work. These vital findings are also favored by the extracted parameters of Young’s modulus, yield strength, fracture toughness and brittleness index. Nevertheless, it is found that every sample studied exhibit typical indentation size effect (ISE) behavior due to the production of the elastic and plastic deformations simultaneously in the system. Moreover, the load dependent microhardness values are theoretically analyzed with the aid of six available models such as six available approaches: Meyer’s law, proportional sample resistance model, modified proportional sample resistance model, elastic/plastic deformation, Hays–Kendall (HK) and indentation-induced cracking model for the first time. The results obtained show that the HK approach exhibits perfectly performance on the analysis of the mechanical characteristics of the superconducting materials exhibiting ISE behavior whereas the other models are inadequate to explain the load independent mechanical characteristics of the Bi-2223 system added by the Zr nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Chattopadhyay, Surface wear: analysis, treatment, and prevention (ASM International, Materials Park, 2001)

    Google Scholar 

  2. F. Wredenberg, P.L. Larsson, Wear 266, 76–83 (2009)

    Article  Google Scholar 

  3. R. Allen, A guide to rebound hardness and scleroscope test (2008)

  4. S. Nagaya, N. Hirano, M. Naruse, T. Watanabe, T. Tamada, IEEE Trans. Appl. Supercond. 23, 5602804–5602807 (2013)

    Article  Google Scholar 

  5. F.N. Werfel, U. Floegel-Delor, R. Rothfeld, T. Riedel, B. Goebel, D. Wippich, P. Schirrmeister, Supercond. Sci. Technol. 25, 014007 (2012)

    Article  Google Scholar 

  6. H.H. Xu, L. Cheng, S.B. Yan, D.J. Yu, L.S. Guo, X. Yao, J. Appl. Phys. 111, 103910 (2012)

    Article  Google Scholar 

  7. W. Buckel, R. Kleiner, Superconductivity: fundamentals and applications, 2nd edn. (Wiley-VCH, Weinheim, 2004)

    Book  Google Scholar 

  8. B. Batlogg, Solid State Commun. 107, 639–647 (1998)

    Article  Google Scholar 

  9. N.K. Saritekin, Y. Zalaoglu, G. Yildirim, M. Doǧruer, C. Terzioglu, A. Varilci, O. Gorur, J. Alloys Compd. 610, 361–371 (2014)

    Article  Google Scholar 

  10. A. Kuczkowski, B. Kusz, Synth. Met. 94, 145–148 (1998)

    Article  Google Scholar 

  11. T.A. Coombs, IEEE Trans. Appl. Supercond. 21, 3581–3586 (2011)

    Article  Google Scholar 

  12. O. Gorur, G. Yildirim, S.P. Altintas, C. Terzioglu, J. Mater. Sci. Mater. El. 24, 1842–1854 (2013)

    Article  Google Scholar 

  13. K.Y. Choi, I.S. Jo, S.C. Han, Y.H. Han, T.H. Sung, M.H. Jung, G.S. Park, S.I. Lee, Curr. Appl. Phys. 11, 1020–1023 (2011)

    Article  Google Scholar 

  14. M. Runde, IEEE Trans. Appl. Supercond. 5, 813–816 (1995)

    Article  Google Scholar 

  15. M. Dogruer, Y. Zalaoglu, A. Varilci, C. Terzioglu, G. Yildirim, O. Ozturk, J. Supercond. Nov. Magn. 24, 961–968 (2011)

    Article  Google Scholar 

  16. H. Miao, M. Meinesz, B. Czabai, J. Parrell, S. Hong, in AIP conference proceedings, vol. 986 (2008), pp. 423–430

  17. G. Yildirim, M. Akdogan, S.P. Altintas, M. Erdem, C. Terzioglu, A. Varilci, Physica B 406, 1853–1857 (2011)

    Article  Google Scholar 

  18. M. Dogruer, C. Terzioglu, G. Yildirim, M. Pakdil, Y. Zalaoglu, J. Mater. Sci.: Mater. El. (2015). doi:10.1007/s10854-015-3177-y

    Google Scholar 

  19. J. Gong, J. Wu, Z. Guan, J. Eur. Ceram. Soc. 19, 2625–2631 (1999)

    Article  Google Scholar 

  20. A.A. Elmustafa, D.S. Stone, J. Mech. Phys. Solid. 5, 357–381 (2003)

    Article  Google Scholar 

  21. K. Sangwal, Mat. Chem. Phys. 63, 145–152 (2000)

    Article  Google Scholar 

  22. R. Awad, A.I. Abou-Aly, M. Kamal, M. Anas, J. Supercond. Nov. Magn. 24, 1947–1956 (2011)

    Article  Google Scholar 

  23. Y. Zalaoglu, E. Bekiroglu, M. Dogruer, G. Yildirim, O. Ozturk, C. Terzioglu, J. Mater. Sci: Mater. El. 24, 2339–2345 (2013)

    Google Scholar 

  24. T.P. Sheahen, Introduction to high-temperature superconductivity, 1st edn. (Kluwer Academic Publishers, New York, 2002)

    Book  Google Scholar 

  25. N.K. Saritekin, M. Dogruer, G. Yildirim, C. Terzioglu, J. Mater. Sci: Mater. El. 25, 3127–3136 (2014)

    Google Scholar 

  26. R.R. Reddy, M. Murakami, S. Tanaka, P.V. Reddy, Physica C 257, 137–142 (1996)

    Article  Google Scholar 

  27. A. Sedky, Physica C 468, 1041–1046 (2008)

    Article  Google Scholar 

  28. O. Ozturk, G. Yildirim, E. Asikuzun, M. Coskunyurek, M. Yilmazlar, A. Kilic, J. Mater. Sci: Mater. El. 24, 4643–4654 (2013)

    Google Scholar 

  29. M. Pakdil, G. Cam, M. Kocak, S. Erim, Mat. Sci. Eng. A-Struct. 528, 7350–7356 (2011)

    Article  Google Scholar 

  30. M. Dogruer, C. Terzioglu, G. Yildirim, O. Gorur, J. Supercond. Nov. Magn. 27, 755–761 (2014)

    Article  Google Scholar 

  31. E. Asikuzun, O. Ozturk, H.A. Cetinkara, G. Yildirim, A. Varilci, M. Yılmazlar, C. Terzioglu, J. Mater. Sci: Mater. El. 23, 1001–1010 (2013)

    Google Scholar 

  32. D. Tabor, Philos. Mag. 74, 1207–1212 (1996)

    Article  Google Scholar 

  33. M. Dogruer, Y. Zalaoglu, G. Yildirim, A. Varilci, C. Terzioglu, J. Mater. Sci: Mater. El. 24, 2019–2026 (2013)

    Google Scholar 

  34. H.C. Ling, M.F. Yan, J. Appl. Phys. 64, 1307–1311 (1988)

    Article  Google Scholar 

  35. U. Kolemen, O. Uzun, M. Yilmazlar, N. Guclu, E. Yanmaz, J. Alloys Compd. 415, 300–306 (2006)

    Article  Google Scholar 

  36. N.H. Mohammed, A.I. Abou-Aly, I.H. Ibrahim, R. Awad, M. Rekaby, J. Alloys Compd. 486, 733–737 (2009)

    Article  Google Scholar 

  37. M. Dogruer, G. Yildirim, O. Ozturk, I. Belenli, C. Terzioglu, J. Supercond. Nov. Magn. 26, 2949–2954 (2013)

    Article  Google Scholar 

  38. H. Li, R.C. Bradt, J. Mater. Sci. 28, 917–926 (1993)

    Article  Google Scholar 

  39. B.D. Michels, G.H. Frischat, J. Mater. Sci. 17, 329–334 (1982)

    Article  Google Scholar 

  40. F. Fröhlich, P. Grau, W. Grellmann, Phys. Stat. Sol. A 42, 79–89 (1977)

    Article  Google Scholar 

  41. B. Ozkurt, J. Supercond. Nov. Magn. 27, 2407–2414 (2014)

    Article  Google Scholar 

  42. M.L. Tarkanian, J.P. Neumann, L. Raymond, in The science of hardness testing and its research application, ed. by J.H. Westbook, H. Conrad (American Society for Metals, Metal Park, 1973)

    Google Scholar 

  43. Q. Ma, D.R. Clarke, J. Mater. Res. 10, 853–863 (1995)

    Article  Google Scholar 

  44. H. Li, R.C. Bradt, J. Mater. Sci. 31, 1065–1070 (1996)

    Article  Google Scholar 

  45. W.G. Mao, J.M. Luo, C.Y. Dai, Y.G. Shen, Appl. Surf. Sci. 338, 92–98 (2015)

    Article  Google Scholar 

  46. M. Dogruer, O. Gorur, F. Karaboga, G. Yildirim, C. Terzioglu, Powder Technol. 246, 553–556 (2013)

    Article  Google Scholar 

  47. C. Hays, E.G. Kendall, Metallography 6, 275–282 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Kahraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akdemir, E., Pakdil, M., Bilge, H. et al. Degeneration of mechanical characteristics and performances with Zr nanoparticles inserted in Bi-2223 superconducting matrix and increment in dislocation movement and cracks propagation. J Mater Sci: Mater Electron 27, 2276–2287 (2016). https://doi.org/10.1007/s10854-015-4022-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4022-z

Keywords

Navigation