Skip to main content
Log in

Electrical resistivity and magnetic properties of electrodeposited nanocrystalline CoFe thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocrystalline CoFe thin films were electrodeposited from baths containing sodium citrate as complexing agent. Cyclic voltammogrames of CoFe baths showed that addition of sodium citrate to the electrolytes shifted reduction potential of metals toward more negative values. X-ray diffraction patterns of CoFe thin films deposited at different current densities illustrated a transition from FCC(Co) phase to FCC(Co) + BCC(Fe) phases with increasing applied current density. Estimation of average grain size (D) of CoFe thin films by Scherrer’s equation showed all coatings had nanocrystalline structures. The accuracy of results obtained by Scherrer’s equation was confirmed by transmutation electron microscope images. Study of magnetic properties by vibrating sample magnetometer indicated that reduction in grain size of CoFe films resulted in noticeable decrease in coercivity, according to “D6” law. Moreover, decreasing grain size in CoFe thin films led to reduction in resistivity which could be attributed to scattering of conduction electrons, according to “Scattering Hypotheses”. However, average grain size of nanocrystalline CoFe films had no effect on the saturation magnetization which is mostly controlled by chemical composition. The results showed that increasing iron content in the deposited CoFe films from 17 to 31 at.% caused enhancement of saturation magnetization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Crozier, Q. Liu, D.G. Ivey, J. Mater. Sci. Mater. Electron. 22, 614–625 (2011)

    Article  Google Scholar 

  2. M. Salehi, P. Marashi, M. Salehi, R. Ghannad, J. Ultrafine Grained Nanostruct. Mater. 47, 27–35 (2014)

    Google Scholar 

  3. A. Ghasemi, A.M. Davarpanah, M. Ghadiri, Int. J. Nanosci. Nanotechnol. 4, 207–214 (2012)

    Google Scholar 

  4. E.I. Cooper, C. Bonhote, J. Heidmann, Y. Hsu, P. Kern, J.W. Lam, M. Ramasubramanian, N. Robertson, L.T. Romankiw, H. Xu, IBM J. Res. Dev. 49, 103–126 (2005)

    Article  Google Scholar 

  5. X. Zhang, S. Wang, J. Zhou, J. Li, D. Jiao, X. Kou, J. Alloys Compd. 474, 273–278 (2009)

    Article  Google Scholar 

  6. W. Wanga, G.H. Yuea, Y. Chena, W.B. Mib, H.L. Baib, D.L. Peng, J. Alloys Compd. 475, 440–445 (2009)

    Article  Google Scholar 

  7. R.H. Yu, S. Basu, L. Ren, Y. Zhang, A. Parvizi-Majidi, K.M. Unruh, J.Q. Xiao, IEEE Trans. Magn. 36, 3388–3393 (2000)

    Article  Google Scholar 

  8. Z. Jamili-Shirvan, M. Haddad-Sabzevar, J. Ultrafine Grained Nanostruct. Mater. 46, 55–59 (2013)

    Google Scholar 

  9. S. Mehrizi, M. Heydarzadeh Sohi, S.A. Seyyed Ebrahimi, Surf. Coat. Technol. 205, 4757–4763 (2011)

    Article  Google Scholar 

  10. G. Herzer, IEEE Trans. Magn. 26, 1397–1402 (1990)

    Article  Google Scholar 

  11. Y. Zhang, D.G. Ivey, Mater. Sci. Eng. B 140, 15–22 (2007)

    Article  Google Scholar 

  12. M. Raghasudha, D. Ravinder, P. Veerasomaia, J. Nanostruct. Chem. 3, 63–68 (2013)

    Google Scholar 

  13. M. Nazari, N. Ghasemi, H. Maddah, M. Motlagh, Nanostruct. Chem. 4, 99–103 (2014)

    Article  Google Scholar 

  14. B. Mueller, ChemEQL, A Program to Calculate Chemical Speciation, Version 3.0. Limnological Research Center EAWAG/ETH, CH-6047 Kastanienbaum, Switzerland (1996)

  15. A.E Martell, R.M. Smith, Critical Stability Constants, vols. 1, 6 (Plenum Press, London, 1974, 1989)

  16. A.E. Martell, R.M. Smith, R.J. Motekaitis Critical Stability Constants Database Version 6.0. NIST (Texas A&M University, College Station, 2001)

  17. A. Brenner, Electrodeposition of Alloys (Academic Press, New York, 1963)

    Google Scholar 

  18. H. Bakar, ASM Handbook, Alloy Phase Diagrams, vol. 3 (ASM International, Materials Park, 1992)

  19. P. Wissmann, H. Ulrich Finzel, Electrical Resistivity of Thin Metal Films (Springer, Berlin, 2007)

    Google Scholar 

  20. S. Mehrizi, M. Heydarzadeh Sohi, E. Shafahian, A.A. Khangholi, J. Mater. Sci. Mater. Electron. 23, 1174–1396 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank University of Tehran and Iranian nanotechnology initiative council for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mehrizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrizi, S., Heydarzadeh Sohi, M. Electrical resistivity and magnetic properties of electrodeposited nanocrystalline CoFe thin films. J Mater Sci: Mater Electron 26, 7381–7389 (2015). https://doi.org/10.1007/s10854-015-3368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3368-6

Keywords

Navigation