Skip to main content
Log in

Formation and transformation of metastable phases during electrodeposition and annealing of cobalt–iron alloy films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

During the electrodeposition of Co–Fe alloy films from a CoSO4·7H2O-FeSO4·7H2O bath, the formation of metastable phases, such as a complex cubic Co–Fe phase isostructural to α-Mn and the HCP ε-Co/Fe and Ω-Co/Fe phases, appears to be related to the incorporation of metal hydroxide/oxide precipitates into the plated alloy films. In the absence of the incorporated precipitates, the plated films are the equilibrium α-Fe solid solution BCC phase. Thus, the addition of stabilizing reagents (such as ammonium citrate), and/or a lowering of solution pH, prevents the formation of the precipitates and promotes the formation of the BCC phase. On the other hand, increasing temperature causes the formation of metastable phases, possibly through the weakening of the stabilizing effect of the ammonium citrate, or the promotion of the formation of metal hydroxides/oxides precipitates. The BCC phase has higher saturation magnetic flux densities and lower coercivities than the metastable phases. Annealing of the films transforms the metastable phases, if present, into the BCC phase, leading to a decrease in the coercivity. An increase in the magnetic flux density after annealing is, however, not observed, possibly due to the cracking or delamination of the films as a result of annealing. Cracking and delamination make the determination of the film volume, which is required for magnetic flux density calculation, questionable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. E.I. Cooper, C. Bonhôte, J. Heidmann, Y. Hsu, P. Kern, J.W. Lam, M. Ramasubramanian, N. Robertson, L.T. Romankiw, H. Xu, IBM J. Res. Dev. 49(1), 103 (2005)

    Article  CAS  Google Scholar 

  2. S. Liao, IEEE Trans. Mag. MAG-23(5), 2981 (1987)

    Article  CAS  Google Scholar 

  3. T. Osaka, T. Yokoshima, D. Shiga, K. Imai, K. Takashima, Electrochem. Solid State Lett. 6(4), C53 (2003)

    Article  CAS  Google Scholar 

  4. R.S. Sundar, S.C. Deevi, Int. Mater. Rev. 50(3), 157–192 (2005)

    Article  CAS  Google Scholar 

  5. T. Osaka, T. Asahi, J. Kawaji, T. Yokoshima, Electrochim. Acta 50, 4576–4585 (2005)

    Article  CAS  Google Scholar 

  6. G. Herzer, IEEE Trans. Mag. 25(5), 3327 (1989)

    Article  CAS  Google Scholar 

  7. G. Herzer, IEEE Trans. Mag. 26(5), 1397 (1990)

    Article  CAS  Google Scholar 

  8. X. Liu, P. Evans, G. Zangari, IEEE Trans. Mag. 36(5), 3479 (2000)

    Article  CAS  Google Scholar 

  9. N. Mattoso, V. Fernandes, M. Abbate, W.H. Schreiner, D.H. Mosca, Electrochem. Solid State Lett. 4(4), C20 (2001)

    Article  CAS  Google Scholar 

  10. Y. Zhang, D.G. Ivey, Mat. Sci. Eng. B 140(1–2), 15 (2007)

    Article  CAS  Google Scholar 

  11. H. Baker (ed.), ASM handbook volume 3 alloy phase diagrams (ASM International, Materials Park, OH, 1992)

    Google Scholar 

  12. P.L. Cavallotti, L. Nobili, A. Vicenzo, Electrochemica Acta. 50, 4557 (2005)

    Article  CAS  Google Scholar 

  13. N.V. Myung, K. Nobe, J. Electrochem. Soc. 148(3), C136 (2001)

    Article  CAS  Google Scholar 

  14. T.A. Tochitskii, V.G. Shadrow, L.V. Nemtsevich, A.V. Boltushkin, Cryst. Res. Technol. 31(5), 583 (1996)

    Article  CAS  Google Scholar 

  15. S. Zhou, Q. Liu, D.G. Ivey, IEEE Int. Nanoelectron. Conf. 474, #4585531 (2008)

  16. B. Crozier, Q. Liu, D.G. Ivey, ECS Trans. 16(45), 141 (2009)

    Article  CAS  Google Scholar 

  17. G. Pourroy, N. Viart, S. Läkamp, J. Alloys Compd. 244, 90 (1996)

    Article  CAS  Google Scholar 

  18. G. Pourroy, J. Alloys Compd. 278(1–2), 264 (1998)

    Article  CAS  Google Scholar 

  19. G. Pourroy, N. Viart, S. Läkamp, J. Magn. Magn. Mat. 203, 37 (1999)

    Article  CAS  Google Scholar 

  20. J.P. Jay, I.-S. Jurca, G. Pourroy, N. Viart, C. Me′ny, P. Panissod, Solid State Sci. 3(3), 301 (2001)

    Article  CAS  Google Scholar 

  21. G. Pourroy, A. Valles-Minquez, I.S. Jurca, C. Meny, N. Viart, P. Panissod, J. Alloys Compd. 333(1–2), 296 (2002)

    Article  CAS  Google Scholar 

  22. M.C. Simmonds, R.C. Newman, S. Fujimoto, J.S. Colligon, Thin Solid Films 279, 4 (1996)

    Article  CAS  Google Scholar 

  23. E.D. Specht, P.D. Rack, A. Rar, G.M. Pharr, E.P. George, H. Hong, Mat. Res. Soc. Symp. Proc. 804, JJ6.3.1 (2004)

    Google Scholar 

  24. E.D. Specht, P.D. Rack, A. Rar, G.M. Pharr, E.P. George, J.D. Fowlkes, H. Hong, E. Karapetrova, Thin Solid Films 493, 307 (2005)

    Article  CAS  Google Scholar 

  25. R. Bertazzoli, D. Pletcher, Electrochemica Acta. 38(5), 671 (1993)

    Article  CAS  Google Scholar 

  26. D.-Y. Park, B.Y. Yoo, S. Kelcher, N.V. Myung, Electrochemica Acta. 51(12), 2523 (2005)

    Article  Google Scholar 

  27. N. Pangarov, R. Pangarova, J. Electroanal. Chem. Interfacial Electrochem. 91(2), 173 (1978)

    Article  CAS  Google Scholar 

  28. E. Raub, K. Müller, Fundamentals of metal deposition (Elsevier, Amsterdam, 1967)

    Google Scholar 

  29. W.D. Callister Jr., Materials science and engineering: an introduction 6th edition (Wiley, USA, 2003)

    Google Scholar 

  30. X.S. Zhou, Electrodeposition of nanocrystalline Co, Fe and CoFe soft magnetic films from ammonium citrate solutions. M.Sc. Thesis, University of Alberta, Spring (2009)

  31. K.L. Chopra, Physica Status Solidi. 32(2), 489 (1969)

    Article  CAS  Google Scholar 

  32. V.V. Povetkin, O.V. Devyatkova, Trans. Inst. Metals Finish. 74(5), 177 (1996)

    CAS  Google Scholar 

  33. M. Paunovic, M. Schlesinger, Fundamentals of electrochemical deposition, 2nd edn. (Wiley, Hobroken, NJ, 2006)

    Book  Google Scholar 

  34. T. Cohen-Hyams, J.M. Plitzko, C.J.D. Hetherington, J.L. Hutchison, J. Yahalom, W.D. Kaplan, J. Mater. Sci. 39, 5701 (2004)

    Article  CAS  Google Scholar 

  35. M. Bauccio (ed.), ASM metals reference book, 3rd edn. (ASM International, Materials Park, OH, 1993)

    Google Scholar 

  36. D. Bonnenberg, K.A. Hempel, Part B: spinels, Fe Oxides, and Fe-Me-O compounds, Landolt-Börnstein—group III condensed matter, vol. 12b (Springer, Berlin, 1980)

    Google Scholar 

  37. B.D. Cullity, Introduction to magnetic materials (Addison-Wesley Publishing Company, Inc, Reading, MA, 1972)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Natural Sciences and Engineering Research Council (NSERC) of Canada and Micralyne Inc. for providing research funding and for providing metallized wafers (Micralyne). The Alberta Centre for Surface Engineering and Science (ACSES) is also acknowledged for providing the XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Ivey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crozier, B., Liu, Q. & Ivey, D.G. Formation and transformation of metastable phases during electrodeposition and annealing of cobalt–iron alloy films. J Mater Sci: Mater Electron 22, 614–625 (2011). https://doi.org/10.1007/s10854-010-0186-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-010-0186-8

Keywords

Navigation