Advertisement

The effect of different dopant site (Cu and Ca) by magnesium on CaCu3Ti4O12 dielectric properties

  • Mohd Fariz Ab Rahman
  • Sabar Derita Hutagalung
  • Zainal Arifin Ahmad
  • Mohd Fadzil Ain
  • Julie Juliewatty MohamedEmail author
Article

Abstract

CaCu3Ti4O12 (CCTO) is known as a material that possesses high dielectric constant (εr ~ 104) and can be the best candidate to be used in electronic components that can be operated at low and high frequency. Unfortunately, high dielectric loss of CCTO can be the main obstacle for this material to be commercialized. In this paper, Mg was used as dopant into CCTO ceramics in order to reduce dielectric loss of CCTO and the dielectric properties of CCTO samples were characterized at high frequency (1 MHz–1 GHz). The samples were prepared via solid state method. Mg was used as dopant at different site of CCTO (Cu and Ca sites). All mixed powders were calcined at 900 °C for 12 h and subsequently sintered at 1030 °C for 10 h. X-ray diffractometer analysis proved the formation of complete single phase CCTO for all sintered samples. Scanning electron microscopy analysis showed the grain size became larger with the addition of dopant concentration. Enhanced dielectric constant was observed for most of the doped samples with most of the CaCu3−xMgxTi4O12 (Mg doped at Cu site) samples had higher dielectric constant and lower dielectric loss at frequency 1 MHz whereas the Ca1−xMgxCu3Ti4O12 (Mg doped at Ca site) samples exhibited higher dielectric constant and lower dielectric loss compared to the CaCu3−xMgxTi4O12 samples at 1 GHz. Thus, Mg replacement on Cu and Ca sites in CCTO gave a great influence on dielectric properties.

Keywords

Dielectric Property Dielectric Loss Sintered Sample High Dielectric Constant Lower Dielectric Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Ministry of Higher Education (MOHE), Malaysia for awarding MyBrain15; USM Research University Grant for Team (RUT) under the Grant No. 854004; USM Short Term Grant under the Grant No. 60312017; USM Research University Grant for Individual (RUI) under the Grant No. 814184 and Exploratory Research Grant Scheme (ERGS) under the Grant No. 6730071.

References

  1. 1.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)CrossRefGoogle Scholar
  2. 2.
    A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S. Shapiro, Solid State Commun. 115, 217 (2000)CrossRefGoogle Scholar
  3. 3.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)CrossRefGoogle Scholar
  4. 4.
    F. Luo, J. He, J. Hu, Y.H. Lin, J. Am. Ceram. Soc. 93, 3043 (2010)CrossRefGoogle Scholar
  5. 5.
    J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, Ceram. Int. 39, 1057 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Vangchangyia, T. Yamwong, E. Swatsitang, P. Thongbai, S. Maensiri, Ceram. Int. 39, 8133 (2013)CrossRefGoogle Scholar
  7. 7.
    L. Singh, U.S. Rai, K.D. Mandal, N.B. Singh, Prog. Cryst. Growth. Charact. 60, 15 (2014)CrossRefGoogle Scholar
  8. 8.
    S. Kwon, D.P. Cann, J. Electroceram. 24, 231 (2010)CrossRefGoogle Scholar
  9. 9.
    T.B. Adams, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 89, 3129 (2006)CrossRefGoogle Scholar
  10. 10.
    Y. Yang, X. Wang, B. Liu, J. Mater. Sci. Mater. Electron. 25, 146 (2014)CrossRefGoogle Scholar
  11. 11.
    J.J. Mohamed, S.D. Hutagalung, Z.A. Ahmad, J. Ceram. Process. Res. 12, 496 (2011)Google Scholar
  12. 12.
    J. Li, B. Fu, H. Lu, C. Huang, J.W. Sheng, Ceram. Int. 39, S149 (2013)CrossRefGoogle Scholar
  13. 13.
    B.S. Prakash, K.B.R. Varma, J. Mater. Sci. Mater. Electron. 17, 899 (2006)CrossRefGoogle Scholar
  14. 14.
    P. Thongbai, J. Jumpatam, B. Putasaeng, T. Yamwong, V. Amornkitbamrung, S. Maensiri, J. Mater. Sci. Mater. Electron. 25, 4657 (2014)CrossRefGoogle Scholar
  15. 15.
    Y. Wang, L. Ni, X.M. Chen, J. Mater. Sci. Mater. Electron. 22, 345 (2011)CrossRefGoogle Scholar
  16. 16.
    L. Zhang, Y. Wu, X. Guo, Z. Wang, Y. Zuo, J. Mater. Sci. Mater. Electron. 23, 865 (2011)CrossRefGoogle Scholar
  17. 17.
    T. Li, J. Chen, D. Liu, Z. Zhang, Z. Chen, Z. Li, X. Cao, B. Wang, Ceram. Int. 40, 9061 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Liu, Q. Chen, X. Zhao, J. Mater. Sci. Mater. Electron. 25, 1547 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Jesurani, S. Kanagesan, M. Hashim, I. Ismail, R. Sabbaghizadeh, J. Mater. Sci. Mater. Electron. 26, 456 (2015)CrossRefGoogle Scholar
  20. 20.
    M.A. Sulaiman, S.D. Hutagalung, M.F. Ain, Z.A. Ahmad, J. Alloys Compd. 493, 486 (2010)CrossRefGoogle Scholar
  21. 21.
    P. Gao, H. Ji, Q. Jia, X. Li, J. Alloys Compd. 527, 90 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Li, G. Cai, D.F. Zhang, W.Y. Wang, W.J. Wang, X.L. Chen, J. Appl. Phys. 104, 1 (2008)Google Scholar
  23. 23.
    W. Li, S. Qiu, N. Chen, G. Du, J. Mater. Sci. Technol. 26, 682 (2010)CrossRefGoogle Scholar
  24. 24.
    J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, J. Eur. Ceram. Soc. 34, 2941 (2014)CrossRefGoogle Scholar
  25. 25.
    R.D. Shannon, C.T. Prewitt, Acta Crystallogr. B 25, 925 (1969)CrossRefGoogle Scholar
  26. 26.
    L. Ni, X.M. Chen, Solid State Commun. 149, 379 (2009)CrossRefGoogle Scholar
  27. 27.
    Y. Hu, T.S. Jeng, J.S. Liu, Ceram. Int. 38, 3459 (2012)CrossRefGoogle Scholar
  28. 28.
    S. Guillemet-Fritsch, T. Lebey, M. Boulos, B. Durand, J. Eur. Ceram. Soc. 26, 1245 (2006)CrossRefGoogle Scholar
  29. 29.
    J.J. Mohamed, S.D. Hutagalung, M.F. Ain, K. Deraman, Z.A. Ahmad, Mater. Lett. 61, 1835 (2007)CrossRefGoogle Scholar
  30. 30.
    P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, Mater. Res. Bull. 47, 2257 (2012)CrossRefGoogle Scholar
  31. 31.
    J.J. Mohamed, S.D. Hutagalung, Z.A. Ahmad, J. King Saud Univ. Eng. Sci. 25, 35 (2013)Google Scholar
  32. 32.
    L. Singh, U.S. Rai, K D. Mandal, A.K. Rai, Appl. Phys. A 112, 891 (2013). doi: 10.1007/s00339-012-7443-z CrossRefGoogle Scholar
  33. 33.
    S.M. Moussa, B.J. Kennedy, Mater. Res. Bull. 36, 2525 (2001)CrossRefGoogle Scholar
  34. 34.
    X.F. Zhang, Q. Xu, D. Zhan, H.X. Liu, W. Chen, D.P. Huang, Phys. B 410, 170 (2013)CrossRefGoogle Scholar
  35. 35.
    V. Brizé, G. Gruener, J. Wolfman, K. Fatyeyeva, M. Tabellout, M. Gervais, F. Gervais, Mater. Sci. Eng. B 129, 135 (2006)CrossRefGoogle Scholar
  36. 36.
    T. Li, Z. Chen, Y. Su, L. Su, J. Zhang, J. Mater. Sci. 44, 6149 (2009)CrossRefGoogle Scholar
  37. 37.
    T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321 (2002)CrossRefGoogle Scholar
  38. 38.
    W.X. Yuan, Z. Luo, C. Wang, J. Alloys Compd. 562, 1 (2013)CrossRefGoogle Scholar
  39. 39.
    J. Lu, D. Wang, G. Zhao, J. Alloys Compd. 509, 3103 (2011)CrossRefGoogle Scholar
  40. 40.
    D. Kuo, C. Chang, T. Su, J. Eur. Ceram. Soc. 21, 1171 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mohd Fariz Ab Rahman
    • 1
  • Sabar Derita Hutagalung
    • 2
  • Zainal Arifin Ahmad
    • 1
  • Mohd Fadzil Ain
    • 3
  • Julie Juliewatty Mohamed
    • 1
    • 4
    Email author
  1. 1.Structural Materials Niche Area, School of Materials and Mineral Resources Engineering, Engineering CampusUniversiti Sains MalaysiaNibong TebalMalaysia
  2. 2.Physics Department, Faculty of ScienceJazan UniversityJazanSaudi Arabia
  3. 3.School of Electrical and Electronic Engineering, Engineering CampusUniversiti Sains MalaysiaNibong TebalMalaysia
  4. 4.Faculty of Earth ScienceUniversiti Malaysia Kelantan Jeli CampusJeliMalaysia

Personalised recommendations