Skip to main content
Log in

The effect of different dopant site (Cu and Ca) by magnesium on CaCu3Ti4O12 dielectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CaCu3Ti4O12 (CCTO) is known as a material that possesses high dielectric constant (εr ~ 104) and can be the best candidate to be used in electronic components that can be operated at low and high frequency. Unfortunately, high dielectric loss of CCTO can be the main obstacle for this material to be commercialized. In this paper, Mg was used as dopant into CCTO ceramics in order to reduce dielectric loss of CCTO and the dielectric properties of CCTO samples were characterized at high frequency (1 MHz–1 GHz). The samples were prepared via solid state method. Mg was used as dopant at different site of CCTO (Cu and Ca sites). All mixed powders were calcined at 900 °C for 12 h and subsequently sintered at 1030 °C for 10 h. X-ray diffractometer analysis proved the formation of complete single phase CCTO for all sintered samples. Scanning electron microscopy analysis showed the grain size became larger with the addition of dopant concentration. Enhanced dielectric constant was observed for most of the doped samples with most of the CaCu3−xMgxTi4O12 (Mg doped at Cu site) samples had higher dielectric constant and lower dielectric loss at frequency 1 MHz whereas the Ca1−xMgxCu3Ti4O12 (Mg doped at Ca site) samples exhibited higher dielectric constant and lower dielectric loss compared to the CaCu3−xMgxTi4O12 samples at 1 GHz. Thus, Mg replacement on Cu and Ca sites in CCTO gave a great influence on dielectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    Article  Google Scholar 

  2. A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S. Shapiro, Solid State Commun. 115, 217 (2000)

    Article  Google Scholar 

  3. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)

    Article  Google Scholar 

  4. F. Luo, J. He, J. Hu, Y.H. Lin, J. Am. Ceram. Soc. 93, 3043 (2010)

    Article  Google Scholar 

  5. J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, Ceram. Int. 39, 1057 (2013)

    Article  Google Scholar 

  6. S. Vangchangyia, T. Yamwong, E. Swatsitang, P. Thongbai, S. Maensiri, Ceram. Int. 39, 8133 (2013)

    Article  Google Scholar 

  7. L. Singh, U.S. Rai, K.D. Mandal, N.B. Singh, Prog. Cryst. Growth. Charact. 60, 15 (2014)

    Article  Google Scholar 

  8. S. Kwon, D.P. Cann, J. Electroceram. 24, 231 (2010)

    Article  Google Scholar 

  9. T.B. Adams, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 89, 3129 (2006)

    Article  Google Scholar 

  10. Y. Yang, X. Wang, B. Liu, J. Mater. Sci. Mater. Electron. 25, 146 (2014)

    Article  Google Scholar 

  11. J.J. Mohamed, S.D. Hutagalung, Z.A. Ahmad, J. Ceram. Process. Res. 12, 496 (2011)

    Google Scholar 

  12. J. Li, B. Fu, H. Lu, C. Huang, J.W. Sheng, Ceram. Int. 39, S149 (2013)

    Article  Google Scholar 

  13. B.S. Prakash, K.B.R. Varma, J. Mater. Sci. Mater. Electron. 17, 899 (2006)

    Article  Google Scholar 

  14. P. Thongbai, J. Jumpatam, B. Putasaeng, T. Yamwong, V. Amornkitbamrung, S. Maensiri, J. Mater. Sci. Mater. Electron. 25, 4657 (2014)

    Article  Google Scholar 

  15. Y. Wang, L. Ni, X.M. Chen, J. Mater. Sci. Mater. Electron. 22, 345 (2011)

    Article  Google Scholar 

  16. L. Zhang, Y. Wu, X. Guo, Z. Wang, Y. Zuo, J. Mater. Sci. Mater. Electron. 23, 865 (2011)

    Article  Google Scholar 

  17. T. Li, J. Chen, D. Liu, Z. Zhang, Z. Chen, Z. Li, X. Cao, B. Wang, Ceram. Int. 40, 9061 (2014)

    Article  Google Scholar 

  18. Y. Liu, Q. Chen, X. Zhao, J. Mater. Sci. Mater. Electron. 25, 1547 (2014)

    Article  Google Scholar 

  19. S. Jesurani, S. Kanagesan, M. Hashim, I. Ismail, R. Sabbaghizadeh, J. Mater. Sci. Mater. Electron. 26, 456 (2015)

    Article  Google Scholar 

  20. M.A. Sulaiman, S.D. Hutagalung, M.F. Ain, Z.A. Ahmad, J. Alloys Compd. 493, 486 (2010)

    Article  Google Scholar 

  21. P. Gao, H. Ji, Q. Jia, X. Li, J. Alloys Compd. 527, 90 (2012)

    Article  Google Scholar 

  22. M. Li, G. Cai, D.F. Zhang, W.Y. Wang, W.J. Wang, X.L. Chen, J. Appl. Phys. 104, 1 (2008)

    Google Scholar 

  23. W. Li, S. Qiu, N. Chen, G. Du, J. Mater. Sci. Technol. 26, 682 (2010)

    Article  Google Scholar 

  24. J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, J. Eur. Ceram. Soc. 34, 2941 (2014)

    Article  Google Scholar 

  25. R.D. Shannon, C.T. Prewitt, Acta Crystallogr. B 25, 925 (1969)

    Article  Google Scholar 

  26. L. Ni, X.M. Chen, Solid State Commun. 149, 379 (2009)

    Article  Google Scholar 

  27. Y. Hu, T.S. Jeng, J.S. Liu, Ceram. Int. 38, 3459 (2012)

    Article  Google Scholar 

  28. S. Guillemet-Fritsch, T. Lebey, M. Boulos, B. Durand, J. Eur. Ceram. Soc. 26, 1245 (2006)

    Article  Google Scholar 

  29. J.J. Mohamed, S.D. Hutagalung, M.F. Ain, K. Deraman, Z.A. Ahmad, Mater. Lett. 61, 1835 (2007)

    Article  Google Scholar 

  30. P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, Mater. Res. Bull. 47, 2257 (2012)

    Article  Google Scholar 

  31. J.J. Mohamed, S.D. Hutagalung, Z.A. Ahmad, J. King Saud Univ. Eng. Sci. 25, 35 (2013)

    Google Scholar 

  32. L. Singh, U.S. Rai, K D. Mandal, A.K. Rai, Appl. Phys. A 112, 891 (2013). doi:10.1007/s00339-012-7443-z

    Article  Google Scholar 

  33. S.M. Moussa, B.J. Kennedy, Mater. Res. Bull. 36, 2525 (2001)

    Article  Google Scholar 

  34. X.F. Zhang, Q. Xu, D. Zhan, H.X. Liu, W. Chen, D.P. Huang, Phys. B 410, 170 (2013)

    Article  Google Scholar 

  35. V. Brizé, G. Gruener, J. Wolfman, K. Fatyeyeva, M. Tabellout, M. Gervais, F. Gervais, Mater. Sci. Eng. B 129, 135 (2006)

    Article  Google Scholar 

  36. T. Li, Z. Chen, Y. Su, L. Su, J. Zhang, J. Mater. Sci. 44, 6149 (2009)

    Article  Google Scholar 

  37. T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321 (2002)

    Article  Google Scholar 

  38. W.X. Yuan, Z. Luo, C. Wang, J. Alloys Compd. 562, 1 (2013)

    Article  Google Scholar 

  39. J. Lu, D. Wang, G. Zhao, J. Alloys Compd. 509, 3103 (2011)

    Article  Google Scholar 

  40. D. Kuo, C. Chang, T. Su, J. Eur. Ceram. Soc. 21, 1171 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Higher Education (MOHE), Malaysia for awarding MyBrain15; USM Research University Grant for Team (RUT) under the Grant No. 854004; USM Short Term Grant under the Grant No. 60312017; USM Research University Grant for Individual (RUI) under the Grant No. 814184 and Exploratory Research Grant Scheme (ERGS) under the Grant No. 6730071.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Juliewatty Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ab Rahman, M.F., Hutagalung, S.D., Ahmad, Z.A. et al. The effect of different dopant site (Cu and Ca) by magnesium on CaCu3Ti4O12 dielectric properties. J Mater Sci: Mater Electron 26, 3947–3956 (2015). https://doi.org/10.1007/s10854-015-2929-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2929-z

Keywords

Navigation