Skip to main content
Log in

Influence of the processing rates and sintering temperatures on the dielectric properties of CaCu3Ti4O12 ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The stoichiometric CaCu3Ti4O12 pellets were prepared by the solid state synthesis. X-ray diffraction data revealed the tenorite CuO and cuprite Cu2O secondary phases on the unpolished CaCu3Ti4O12 samples regardless of the heating rates. Also, the dielectric constant marked the highest for the CaCu3Ti4O12 sample sintered at the lowest heating rate (1°C/min), which was explained by the increased grain conductivity due to the cation reactions. On the other hand, Cu2O phase was found only on the unpolished CaCu3Ti4O12 sample sintered over 1100°C and those are considered as the remains reduced from the CuO phase. The higher sintering temperature showed the increased dielectric constant and the loss tangent of the CaCu3Ti4O12 samples, and this result could be interpreted by the impedance measurement data. The relationship between the processing condition and the dielectric properties was discussed in terms of the cation non-stoichiometry and the defect chemistry in CaCu3Ti4O12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Zorpette, IEEE Spectrum 42, 32 (2005). doi:10.1109/MSPEC.2005.1377872

    Article  Google Scholar 

  2. D.-Y. Jeong, S.-J. Yoon, Electron. Mater. Lett. 2(3), 207 (2006)

    CAS  Google Scholar 

  3. C. Relva, Buchanan (ed.), Ceramic Materials for Electronics: Processing, Properties, and Applications, 2nd edn. (Marcel Dekker, New York, 1991), p. 79

  4. A.J. Moulson, J.M. Herbert, Electroceramics, 2nd edn. (Wiley, Chichester, 2003), p. 320

    Google Scholar 

  5. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000). doi:10.1006/jssc.2000.8703

    Article  CAS  ADS  Google Scholar 

  6. A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Solid State Commun. 115, 217 (2000). doi:10.1016/S0038-1098(00)00182-4

    Article  CAS  ADS  Google Scholar 

  7. M.A. Subramanian, A.W. Sleight, Solid State Sci. 4, 347 (2003). doi:10.1016/S1293-2558(01)01262-6

    Article  Google Scholar 

  8. T.-T. Fang, C.-P. Liu, Chem. Mater. 17, 5167 (2004). doi:10.1021/cm051180k

    Article  Google Scholar 

  9. P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Phys. Rev. B 66, 052105 (2002). doi:10.1103/PhysRevB.66.052105

    Article  ADS  Google Scholar 

  10. J. Volger, ed. by A.F. Gibson. rogress in Semiconductors, Vol. 4 (Wiley, New York, 1960), p. 207

    Google Scholar 

  11. S. Aygün, X. Tan, J.-P. Maria, D.P. Cann, J. Electroceram. 15(3), 203 (2005). doi:10.1007/s10832-005-3191-1

    Article  Google Scholar 

  12. T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14(18), 1321 (2002). doi:10.1002/1521-4095(20020916)14:18<1321::AID-ADMA13217>3.0.CO;2-P

    Article  CAS  Google Scholar 

  13. W. Kobayashi, I. Terasaki, Physica B 329-333, 771 (2003). doi:10.1016/S0921-4526(02)02517-6

    Article  CAS  ADS  Google Scholar 

  14. G. Chiodelli, V. Massarotti, D. Capsoni, M. Bini, C.B. Azzoni, M.C. Mozzati, P. Lupotto, Solid State Commun. 132, 241 (2004). doi:10.1016/j.ssc.2004.07.058

    Article  CAS  ADS  Google Scholar 

  15. S.-Y. Chung, S.-Y. Choi, T. Yamamoto, Y. Ikuhara, S.-J.L. Kang, Appl. Phys. Lett. 88, 091917 (2006). doi:10.1063/1.2179110

    Article  ADS  Google Scholar 

  16. S. Kwon, C.-C. Huang, E.A. Patterson, E.F. Alberta, S. Kwon, W.S. Hackenberger, D.P. Cann, Mater. Lett. 62, 633 (2008). doi:10.1016/j.matlet.2007.06.042

    Article  CAS  Google Scholar 

  17. T.-T. Fang, L.-T. Mei, H.-F. Ho, Acta Mater. 54, 2867 (2006). doi:10.1016/j.actamat.2006.02.037

    Article  CAS  Google Scholar 

  18. K. Chen, Y.F. Liu, F. Gao, Z.L. Du, J.M. Liu, X.N. Ying, X.M. Lu, J.S. Zhu, Solid State Commun. 141, 440 (2007). doi:10.1016/j.ssc.2006.12.004

    Article  CAS  ADS  Google Scholar 

  19. S.F. Shao, J.L. Zhang, P. Zheng, C.L. Wang, Solid State Commun. 142, 28 (2007). doi:10.1016/j.ssc.2007.02.025

    Article  Google Scholar 

  20. B.A. Bender, M.-J. Pan, Mater. Sci. Eng. B 117, 339 (2005). doi:10.1016/j.mseb.2004.11.019

    Article  Google Scholar 

  21. B. Shri Prakash, K.B.R. Varma, Physica B 382, 312 (2006). doi:10.1016/j.physb.2006.03.005

    Article  ADS  Google Scholar 

  22. R. Aoyagi, M. Iwata, M. Maeda, Ferroelectrics 356, 90 (2007). doi:10.1080/00150190701509306

    Article  CAS  Google Scholar 

  23. J. Li, M.A. Subramanian, H.D. Rosenfeld, C.Y. Jones, B.H. Toby, A.W. Sleight, Chem. Mater. 16, 5223 (2004). doi:10.1021/cm048345u

    Article  CAS  Google Scholar 

  24. C. Wang, H.J. Zhang, P.M. He, G.H. Cao, Appl. Phys. Lett. 91, 052910 (2007). doi:10.1063/1.2768006

    Article  ADS  Google Scholar 

  25. O. Kubaschewski, C.B. Alcock, P.J. Spencer, Materials Thermochemistry, 6th edn. (Pergamon, New York, 1993)

    Google Scholar 

  26. J. Li, A.W. Sleight, M.A. Subramanian, Solid State Commun. 135, 260 (2005). doi:10.1016/j.ssc.2005.04.028

    Article  CAS  ADS  Google Scholar 

  27. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80(12), 2153 (2002). doi:10.1063/1.1463211

    Article  CAS  ADS  Google Scholar 

  28. S. Kwon, N. Triamnak, D.P. Cann, Proceedings of the 17th International Symposium on Applications of Ferroelectrics, Santa Fe, NM, (2008). doi:10.1109/ISAF.2008.4688095

  29. Oregon State University online network. http://www.webelements.com/webelements/element/text/Cu/heat.html. Accessed on June 15, 2008

  30. T.B. Adams, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 89(9), 2833 (2006)

    CAS  Google Scholar 

  31. S. Kwon, C.-C. Huang, M.A. Subramanian, D.P. Cann. J. Alloy. Comp., in press (2009). doi:10.1016/j.jallcom.2008.06.015

Download references

Acknowledgements

This work was supported by the Office of Naval Research Capacitor Program and the American Chemical Society’s Petroleum Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seunghwa Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, S., Cann, D.P. Influence of the processing rates and sintering temperatures on the dielectric properties of CaCu3Ti4O12 ceramics. J Electroceram 24, 231–236 (2010). https://doi.org/10.1007/s10832-009-9563-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-009-9563-1

Keywords

Navigation