Skip to main content
Log in

Phase transition, dielectric, ferroelectric and ferromagnetic properties of La-doped BiFeO3–BaTiO3 multiferroic ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

0.70Bi1−xLaxFeO3–0.30BaTiO3 + 1 mol% MnO2 multiferroic ceramics were prepared by using the solid state reaction and their phase structure, dielectric, ferroelectric and ferromagnetic properties were studied. All the ceramics possess perovskite structure and exhibit good insulation and densification. A morphotropic phase boundary of rhombohedral and tetragonal phases is formed at x = 0.02. As the concentration of La3+ is increased, the ferroelectric–paraelectric phase transition of the ceramics at Curie temperature becomes gradually more diffusive. A small amount of the substitution of La3+ for Bi3+ improves effectively the ferroelectricity of the ceramics and the optimum remanent polarization of 27.2 μm/cm2 reaches at x = 0.04. After the addition of La3+, the ferromagnetism of the ceramics is greatly enhanced and the remanent magnetization M r monotonously increases from 0.0321 to 0.147 emu/g with x increasing from 0 to 0.10. Our results show that the ceramics possess simultaneously improved ferroelectric and ferromagnetic properties and may a promising candidate for room-temperature multiferroic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Q. He, C.H. Yeh, J.C. Yang, G. Singh-Bhalla, C.W. Liang, P.W. Chiu, G. Catalan, L.W. Martin, Y.H. Chu, J.F. Scott, R. Ramesh, Phys. Rev. Lett. 108, 067203 (2012)

    Article  Google Scholar 

  2. J.H. Lee, M.-A. Oak, H.J. Choi, J.Y. Son, H.M. Jang, J. Mater. Chem. 22, 1667–1672 (2012)

    Article  Google Scholar 

  3. T.R. Paudel, S.S. Jaswal, E.Y. Tsymbal, Phys. Rev. B 85, 104409 (2012)

    Article  Google Scholar 

  4. S. Goswami, D. Bhattacharya, P. Choudhury, B. Ouladdiaf, T. Chatterji, Appl. Phys. Lett. 99, 073106 (2011)

    Article  Google Scholar 

  5. M.M. Kumar, V.R. Palker, K. Srinvivas, S.V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000)

    Article  Google Scholar 

  6. A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Loutts, Single Ph. J. Appl. Phys. 97, 093903 (2005)

    Article  Google Scholar 

  7. S.K. Pradhan, B.K. Roul, Physica B 406, 3313–3317 (2011)

    Article  Google Scholar 

  8. Z.Z. Ma, Z.M. Tian, J.Q. Li, C.H. Wang, S.X. Huo, H.N. Duan, S.L. Yuan, Solid Stat. Sci. 13, 2196–2200 (2011)

    Article  Google Scholar 

  9. Q.Q. Wang, Z. Wang, X.Q. Liu, X.M. Chen, J. Am. Ceram. Soc. 95, 670–675 (2012)

    Article  Google Scholar 

  10. Y. Ma, X.M. Chen, J. Appl. Phys. 105, 054107 (2009)

    Article  Google Scholar 

  11. M.T. Buscaglia, L. Mitoseriu, V. Buscaglia, I. Pallecchi, M. Viciani, P. Nanni, A.S. Siri, J. Eur. Ceram. Soc. 26(14), 3027–3030 (2006)

  12. A. Singh, V. Pandey, R.K. Kotnala, D. Pandey, Phys. Rev. Lett. 101, 247602 (2008)

    Article  Google Scholar 

  13. T.H. Wang, Y. Ding, C.S. Tu, Y.D. Yao, K.T. Wu, T.C. Lin, H.H. Yu, H.Y. Lee, J. Appl. Phys. 109, 07D907 (2011)

    Google Scholar 

  14. S.O. Leontsev, R.E. Eitel, J. Am. Ceram. Soc. 92, 2957–2961 (2009)

    Article  Google Scholar 

  15. H.B. Yang, C.R. Zhou, X.Y. Liu, Q. Zhou, G.H. Chen, W.Z. Li, H. Wang, J. Eur. Ceram. Soc. 33, 1177–1183 (2013)

    Article  Google Scholar 

  16. S.T. Zhang, L.H. Pang, Y. Zhang, M.H. Liu, Y.F. Chen, J. Appl. Phys. 100, 114108 (2006)

    Article  Google Scholar 

  17. Y.J. Wu, X.K. Chen, J. Zhang, X.J. Chen, J. Appl. Phys. 111, 053927 (2012)

    Article  Google Scholar 

  18. K.S. Nalwa, A. Grag, J. Appl. Phys. 103, 044101 (2008)

    Article  Google Scholar 

  19. G.L. Yuan, S.W. Or, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 89, 052905 (2006)

    Article  Google Scholar 

  20. L. Lutterotti, MAUD, Material Analysis Using Diffraction (2011). http://www.ing.unitn.it/~maud/index.html

  21. M.I. Mendelson, J. Am, Ceram. Soc. 52, 443–446 (1968)

    Article  Google Scholar 

  22. X.H. Wang, P.L. Chen, I.W. Chen, J. Am. Ceram. Soc. 89, 431 (2006)

    Article  Google Scholar 

  23. T. Kawae, Y. Terauchi, H. Tsuda, M. Kumeda, Appl. Phys. Lett. 94, 112904 (2009)

    Article  Google Scholar 

  24. N. Setter, E. Cross, J. Mater. Sci. 15, 2478 (1980)

    Article  Google Scholar 

  25. N. Setter, L.E. Cross, J. Appl. Phys. 51, 4356 (1980)

    Article  Google Scholar 

  26. D. Lebeugle, D. Colson, A. Forget, M. Viret, A.M. Bataille, A. Gukasov, Phys. Rev. Lett. 100, 227602 (2008)

    Article  Google Scholar 

  27. C. Lan, Y. Jiang, S. Yang, J. Mater. Sci. 46, 734–738 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the projects of Science and Technology Bureau of Sichuan Province (2010JQ0046), Sichuan Normal University and the Open Project of State Key Laboratory of Electronic Thin Films and Integrated Devices of University of Electronic Science and Technology of China (KFJJ201108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunmin Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Tian, M., Guo, Y. et al. Phase transition, dielectric, ferroelectric and ferromagnetic properties of La-doped BiFeO3–BaTiO3 multiferroic ceramics. J Mater Sci: Mater Electron 26, 978–984 (2015). https://doi.org/10.1007/s10854-014-2492-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2492-z

Keywords

Navigation