Skip to main content
Log in

Structural, dielectric, and multiferroic properties of Ta2O5-modified BiFeO3–BaTiO3–LaFeO3 solid solutions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a series of Ta2O5-doped 0.675BiFeO3–0.3BaTiO3–0.025LaFeO3x mol% Ta2O5 (x = 0, 0.25, 0.50, 0.75, 1.0, 1.25) multiferroic ceramics were synthesized by solid-state reaction. The effects of Ta5+ doping on their phase structure, morphology, dielectric, ferroelectric, magnetic, and magnetoelectric properties were assessed. All samples were found to crystallize in perovskite structures, and the grain size was remarkably decreased by Ta5+ doping. Ta2O5 was beneficial to the dielectric properties, with the dielectric constant rising from 829 for undoped ceramic to 1149 for x = 1.25 at 100 Hz. The remnant polarization Pr and coercive field Ec decreased as x increased, indicating the worsening of ferroelectric behavior. In comparison, the ferromagnetism was evidently enhanced with increasing content of Ta2O5, and the remanent magnetization Mr peaked at 0.035 emu/g for x = 0.75. The magnetoelectric coefficient αME reached the maximum (418.68 mV/cm·Oe) for x = 0.25 at 200 Oe and 105 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.F. Scott, J. Mater. Chem. 22, 4567–4574 (2012)

    Article  CAS  Google Scholar 

  2. C.N.R. Rao, C.R. Serrao, J. Mater. Chem. 17, 4931–4938 (2007)

    Article  CAS  Google Scholar 

  3. X.W. Qi, J. Zhou, Z.X. Yue, Adv. Funct. Mater. 14, 920–926 (2004)

    Article  CAS  Google Scholar 

  4. K.F. Wang, J.M. Liu, Z.F. Ren, Adv. Phys. 58, 321–448 (2009)

    Article  CAS  Google Scholar 

  5. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463–2485 (2009)

    Article  CAS  Google Scholar 

  6. J.G. Wu, Z. Fan, D.Q. Xiao, J. Zhu, J.G. Wang, Prog. Mater. Sci. 84, 335–402 (2016)

    Article  CAS  Google Scholar 

  7. J.G. Wu, Advances in Lead-free Piezoelectric Materials (Springer, Singapore, 2018)

    Book  Google Scholar 

  8. A. Amouri, M.A. Wederni, N. Abdelmoula, H. Khemakhem, J. Alloys Compd. 794, 443–454 (2019)

    Article  CAS  Google Scholar 

  9. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.-M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731–1733 (2004)

    Article  CAS  Google Scholar 

  10. Y.Q. Guo, T. Wang, L.H. He, Q.J. Zheng, J. Liao, C.G. Xu, D.M. Lin, J. Mater. Sci.: Mater. Electron. 27, 5741–5747 (2016)

    CAS  Google Scholar 

  11. J.X. Wei, D.Y. Fu, J.R. Cheng, J.G. Chen, J. Mater. Sci. 52, 10726–10737 (2017)

    Article  CAS  Google Scholar 

  12. X.L. Liu, G.D. Wang, J. Wu, M.Y. Li, S.Z. Pu, Z.Q. Hu, J. Alloys Compd. 791, 200–207 (2019)

    Article  CAS  Google Scholar 

  13. M.R. Islam, M.S. Islam, M.A. Zubair, H.M. Usama, M.S. Azam, A. Sharif, J. Alloys Compd. 735, 2584–2596 (2018)

    Article  CAS  Google Scholar 

  14. S. Pattanayak, R.N.P. Choudhary, S.R. Shannigrahi, P.R. Das, R. Padhee, J. Magn. Magn. Mater. 341, 158–164 (2013)

    Article  CAS  Google Scholar 

  15. J. Singh, A. Agarwal, S. Sanghi, T. Bhasin, M. Yadav, U. Bhakar, J. Magn. Magn. Mater. 487, 165337 (2019)

    Article  CAS  Google Scholar 

  16. S.G. Huang, Q.N. Li, L. Yang, J.W. Xu, C.R. Zhou, G.H. Chen, C.L. Yuan, G.H. Rao, Ceram. Int. 44, 8955–8962 (2018)

    Article  CAS  Google Scholar 

  17. W.M. Zhu, Z.G. Ye, Ceram. Int. 30, 1435–1442 (2004)

    Article  CAS  Google Scholar 

  18. A.S. Priya, I.B.S. Banu, S. Anwar, Mater. Lett. 142, 42–44 (2015)

    Article  CAS  Google Scholar 

  19. T. Zheng, C.L. Zhao, J.G. Wu, K. Wang, J.F. Li, Scr. Mater. 155, 11–15 (2018)

    Article  CAS  Google Scholar 

  20. T. Zheng, Y. Ding, J.G. Wu, J. Mater. Sci.: Mater. Electron. 28, 11534–11542 (2017)

    CAS  Google Scholar 

  21. X.W. Qi, M. Zhang, X.Y. Zhang, Y.H. Gu, H.E. Zhu, W.C. Yang, Y. Li, RSC Adv. 7, 51801 (2017)

    Article  CAS  Google Scholar 

  22. T. Moriya, Phys. Rev. 120, 91 (1960)

    Article  CAS  Google Scholar 

  23. R.L. Yang, H.B. Sun, J. Li, Y.A. Li, Ceram. Int. 44, 14032–14035 (2018)

    Article  CAS  Google Scholar 

  24. A. Puhan, B. Bhushan, V. Kumar, H.S. Panda, A. Priyam, D. Das, D. Rout, Mater. Sci. Eng. B 241, 48–54 (2019)

    Article  CAS  Google Scholar 

  25. J.H. Xu, H. Ke, D.C. Jia, W. Wang, Y. Zhou, Philos. Mag. Lett. 89, 701–710 (2009)

    Article  CAS  Google Scholar 

  26. T. Fakhrul, R. Mahbub, N. Chowdhury, Q. Deen Mohd Khosru, A. Sharif, J. Alloys Compd. 622, 471–476 (2015)

    Article  CAS  Google Scholar 

  27. MdR Islam, R.H. Galib, A. Sharif, M.H. Md, A. Zubair, MdF Islam, J. Alloys Compd. 688, 1186–1194 (2016)

    Article  CAS  Google Scholar 

  28. M. Zhang, X.Y. Zhang, S. Das, Z.M.M. Wang, X.W. Qi, Q. Du, J. Mater. Chem. C 7, 10551–10560 (2019)

    Article  CAS  Google Scholar 

  29. Q.M. Hang, Z.B. Xing, X.H. Zhu, M. Yu, Y. Song, J.M. Zhu, Z.G. Liu, Ceram. Int. 38S, S411–S414 (2012)

    Article  CAS  Google Scholar 

  30. N. Kumar, A. Shukla, R.N.P. Choudhary, J. Alloys Compd. 747, 895–904 (2018)

    Article  CAS  Google Scholar 

  31. Z.H. Yao, C.B. Xu, H.X. Liu, H. Hao, M.H. Cao, Z.J. Wang, Z. Song, W. Hu, A. Ullah, J. Mater. Sci.: Mater. Electron. 25, 4975–4982 (2014)

    CAS  Google Scholar 

  32. Z.Q. Hu, M.Y. Li, Y. Yu, J. Liu, L. Pei, J. Wang, X.L. Liu, B.F. Yu, X.Z. Zhao, Solid State Commun. 150, 1088–1091 (2010)

    Article  CAS  Google Scholar 

  33. M. Zhang, X.Y. Zhang, X.W. Qi, H.E. Zhu, Y. Li, Y.H. Gu, Ceram. Int. 44, 21269–21276 (2018)

    Article  CAS  Google Scholar 

  34. Y.K. Wang, T.Y. Tseng, P. Lin, Appl. Phys. Lett. 80, 3790–3792 (2002)

    Article  CAS  Google Scholar 

  35. S.X. Huo, S.L. Yuan, Z.M. Tian, C.H. Wang, Y. Qiu, J. Am. Ceram. Soc. 95, 1383–1387 (2012)

    Article  CAS  Google Scholar 

  36. D.M. Lin, Q.J. Zheng, Y. Li, Y. Wan, Q. Li, W. Zhou, J. Eur. Ceram. Soc. 33, 3023–3036 (2013)

    Article  CAS  Google Scholar 

  37. D. Lebeugle, D. Colson, A. Forget, M. Viret, A.M. Bataille, A. Gukasov, Phys. Rev. Lett. 100, 227602 (2008)

    Article  CAS  Google Scholar 

  38. S.K. Pradhan, B.K. Roul, Phys. B 406, 3313–3317 (2011)

    Article  CAS  Google Scholar 

  39. L.Y. Wang, D.H. Wang, H.B. Huang, Z.D. Han, Q.Q. Cao, B.X. Gu, Y.W. Du, J. Alloys Compd. 469, 1–3 (2009)

    Article  CAS  Google Scholar 

  40. J. Shah, R.K. Kotnala, J. Mater. Chem. A 1, 8601–8608 (2013)

    Article  CAS  Google Scholar 

  41. R. Gupta, J. Shah, S. Chaudhary, S. Singh, R.K. Kotnala, J. Nanopart. Res. 15(10), 2004 (2013)

    Article  CAS  Google Scholar 

  42. S.C. Yang, A. Kumar, V. Petkov, S. Priya, J. Appl. Phys. 113, 144101 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (Grant No. 51972048).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyan Zhang or Xiwei Qi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yan, J., Shi, R. et al. Structural, dielectric, and multiferroic properties of Ta2O5-modified BiFeO3–BaTiO3–LaFeO3 solid solutions. J Mater Sci: Mater Electron 31, 1502–1508 (2020). https://doi.org/10.1007/s10854-019-02665-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02665-3

Navigation