Skip to main content
Log in

Impacts of substitution of BaTiO3 on structure, dielectric, transport, and magnetic properties of multiferroic BiFe0.5Mn0.5O3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multiferroic ceramics \({Bi}_{1-x}{Ba}_{x}{Fe}_{0.5-x}{Ti}_{x}{Mn}_{0.5}{O}_{3}\) with \(0\le x\le 0.2\) has been prepared using solid-state method with sintering under N2 atmosphere. A detailed study on the interaction between the dielectric, magnetic, and transport properties in ceramic samples is referred. Rhombohedral phase was established for all the compositions. Dielectric properties have been improved by the reduction of dielectric loss ( for x = 0.2, tan δ ⁓ 0.17). conduction mechanism have been deduced from the analysis of current density, no signature of Poole Frenkel (PF) has been designated, while the analyzed samples showed a predominance of the Ohmic conduction mechanism and the space charge-limited conduction (SCLC) mechanism. Moreover, ac conductivity study suggests a mechanism for small-polaron hopping at low temperatures, followed by the transfer of ionized oxygen vacancies at high temperatures. Besides, saturated hysteresis loops are observed in all BT concentrations. The highest saturation magnetization (\({\text{M}}_{\text{S}}\approx 0.107 \text{e}\text{m}\text{u}/\text{g}\)) was found for the composition x = 0.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be provided upon reasonable request.

References

  1. C. Chen et al., Deterministic manipulation of multi-state polarization switching in multiferroic thin films. Adv. Funct. Mater. 38(3), 2208244 (2022)

    Google Scholar 

  2. Y. Wang et al., Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure. Nat. Commun. 11(1), 1–8 (2020)

    Google Scholar 

  3. J.R. Teague, R. Gerson, W.J. James, Dielectric hysteresis in single crystal BiFeO3. Solid State Commun. 8(13), 1073–1074 (1970)

    Article  CAS  Google Scholar 

  4. P. Royen, K. Swars, Das System Wismutoxyd-Eisenoxyd Im bereich von 0 bis 55 Mol% eisenoxyd. Angew. Chem. 69(24), 779–779 (1957)

    Article  CAS  Google Scholar 

  5. Q. Zhang et al., Effect of La3 + substitution on the phase transitions, microstructure and electrical properties of Bi1- xLaxFeO3 ceramics. J. Alloys Compd. 546, 57–62 (2013)

    Article  CAS  Google Scholar 

  6. A.K. Pradhan et al., Magnetic and electrical properties of single-phase multiferroic BiFeO 3. J. Appl. Phys. 97(9), 093903 (2005)

    Article  Google Scholar 

  7. R.N.P. Choudhary, K. Perez, P. Bhattacharya, R.S. Katiyar, Structural and electrical properties of BiFeO3-Pb (ZrTi) O3 composites. Appl. Phys. A 86(1), 131–138 (2007)

    Article  CAS  Google Scholar 

  8. F. Mizouri, I. Kallel, N. Abdelmoula, D. Mezzane, H. Khemakhem, Structural dielectric and magnetic properties of (1-x)BiFeO3-xBa0.9Ca0.1Ti0.9Sn0.1O3 ceramics. J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2017.10.066

    Article  Google Scholar 

  9. R. Katoch, C.D. Sekhar, V. Adyam, J.F. Scott, R. Gupta, A. Garg, Spin phonon interactions and magnetodielectric effects in multiferroic BiFeO3–PbTiO3. J. Phys.: Condens. Matter. 28(7), 075901 (2016)

    PubMed  Google Scholar 

  10. P. Suresh, S. Srinath, Study of structure and magnetic properties of rare earth doped BiFeO3. Phys. B: Condens. Matter. 448, 281–284 (2014)

    Article  CAS  Google Scholar 

  11. H. Deng et al., Enhanced dielectric and ferroelectric properties of Ba and Ti co-doped BiFeO3 multiferroic ceramics. J. Alloys Compd. 582, 273–276 (2014)

    Article  CAS  Google Scholar 

  12. L.Y. Wang et al., The magnetic properties of polycrystalline Bi1- xSrxFeO3 ceramics. J. Alloys Compd. 469, 1–2 (2009)

    Article  CAS  Google Scholar 

  13. A. Reetu, S. Agarwal et al.,  Rietveld analysis, dielectric and magnetic properties of Sr and Ti codoped BiFeO3 multiferroic. J. Appl. Phys. (2011). https://doi.org/10.1063/1.3646557

    Article  Google Scholar 

  14. P.E. Tomaszewski, Comment on ‘Structurlectrical, and multiferroic characteristics of lead-free multiferroic: Bi (Co0.5Ti0.5)O3–BiFeO3 solid solution’ by, N. Kumar, A. Shukla, N. Kumar, R. Choudhary, A. Kumar et al., RSC Adv., 2018, 8, 36939, RSC advances, vol. 12, no. 46, pp. 30008–30010, 2022

  15. F. Gadhoumi et al., Investigation of Magnetic, Dielectric and Optical Properties of BiFe0.5Mn0.5O3 Multiferroic ceramic. Chem. Phys. Lett. 753, 137569 (2020)

    Article  CAS  Google Scholar 

  16. F. Gadhoumi, A. Lahmar, N. Abdelmoula, M.E. Marssi, H. Khemakhem, The effects of N2 atmosphere annealing on the physical properties of BiFe0.5Mn0.5O3 ceramic. J. Alloy Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.160323

    Article  Google Scholar 

  17. K.M. Degues, F. Elyseu, A.M. Bernardin, L.M. Schabbach, M.C. Fredel, Synthesis and kinetics of formation of Bismuth Ferrite (BFO) by solid-state reaction under O 2 and N 2. Rochester, NY. Dec. 04 (2021). https://doi.org/10.2139/ssrn.3977410

  18. S.O. Leontsev, R.E. Eitel, Dielectric and piezoelectric properties in Mn-modified (1- x) BiFeO3–xBaTiO3 ceramics. J. Am. Ceram. Soc. 92(12), 2957–2961 (2009)

    Article  CAS  Google Scholar 

  19. Y. Wei, X. Wang, J. Zhu, X. Wang, J. Jia, Dielectric, ferroelectric, and piezoelectric properties of BiFeO3–BaTiO3 ceramics. J. Am. Ceram. Soc. 96(10), 3163–3168 (2013)

    Article  CAS  Google Scholar 

  20. T. Futakuchi, T. Kakuda, Y. Sakai, Multiferroic properties of BiFeO3–BaTiO3 based ceramics. J. Ceram. Soc. Jpn. 122(1426), 464–468 (2014)

    Article  Google Scholar 

  21. A. Ianculescu, F.P. Gheorghiu, P. Postolache, O. Oprea, L. Mitoseriu, The role of doping on the structural and functional properties of BiFe1- xMnxO3 magnetoelectric ceramics. J. Alloys Compd. 504(2), 420–426 (2010)

    Article  CAS  Google Scholar 

  22. M. Shariq, D. Kaur, V.S. Chandel, CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, Investigation of structural and magnetic properties of Pb free multiferroic (BiFeO3)1 – x(BaTiO3)x solid solutions, presented at the INTERNATIONAL 2015 (ICNAAM 2015), Rhodes, Greece, 2016, p. 030018. https://doi.org/10.1063/1.4953139

  23. M.M. Kumar, A. Srinivas, S.V. Suryanarayana, Structure property relations in BiFeO 3/BaTiO 3 solid solutions. J. Appl. Phys. 87(2), 855–862 (2000)

    Article  CAS  Google Scholar 

  24. R.R. Awasthi, K. Asokan, B. Das, Structural, dielectric and magnetic domains properties of Mn-doped BiFeO 3 materials. Int. J. Appl. Ceram. Technol. 17(3), 1410–1421 (2020). https://doi.org/10.1111/ijac.13446

    Article  CAS  Google Scholar 

  25. D. Kothari, V.R. Reddy, V.G. Sathe, A. Gupta, A. Banerjee, A.M. Awasthi, Raman scattering study of polycrystalline magnetoelectric BiFeO3. J. Magn. Magn. Mater. 320, 3–4 (2008)

    Article  Google Scholar 

  26. D. Varshney, A. Kumar, K. Verma, Effect of a site and B site doping on structural, thermal, and dielectric properties of BiFeO3 ceramics. J. Alloys Compd. 509(33), 8421–8426 (2011)

    Article  CAS  Google Scholar 

  27. I.W. Chen, Structural origin of relaxor ferroelectrics—revisited. J. Phys. Chem. Solids. 61(2), 197–208 (2000)

    Article  CAS  Google Scholar 

  28. X.H. Zheng, Z.H. Ma, P.J. Chen, D.P. Tang, N. Ma, Decomposition behavior and dielectric properties of Ti-doped BiFeO3 ceramics derived from molten salt method. J. Mater. Sci.: Mater. Electron. 23(8), 1533–1537 (2012)

    CAS  Google Scholar 

  29. S. Sharma, V. Singh, R.K. Dwivedi, Electrical properties of (1- x) BFO–(x) PZT multiferroics synthesized by sol-gel method: transition from relaxor to non-relaxor. J. Alloys Compd. 682, 723–729 (2016)

    Article  CAS  Google Scholar 

  30. H. Zhang, W. Jo, K. Wang, K.G. Webber, Compositional dependence of dielectric and ferroelectric properties in BiFeO3–BaTiO3 solid solutions. Ceram. Int. 40(3), 4759–4765 (2014)

    Article  CAS  Google Scholar 

  31. P. Liu, S. Gao, G. Zhang, Y. Huang, W. You, R. Che, Hollow engineering to Co@ N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021)

    Article  CAS  Google Scholar 

  32. P. Liu et al., Synergistic dielectric–magnetic enhancement via phase-evolution engineering and dynamic magnetic resonance. Adv. Funct. Mater. 33(13), 2211298 (2023)

    Article  CAS  Google Scholar 

  33. Z. Lu et al., In situ poling X-ray diffraction studies of lead-free BiFeO3–SrTiO3 ceramics. Mater. Today Phys. 19, 100426 (2021)

    Article  CAS  Google Scholar 

  34. Z. Lu et al., Superior energy density through tailored dopant strategies in multilayer ceramic capacitors. Energy Environ. Sci. 13(9), 2938–2948 (2020)

    Article  CAS  Google Scholar 

  35. A.R. Makhdoom, M.J. Akhtar, M.A. Rafiq, M.M. Hassan, Investigation of transport behavior in Ba doped BiFeO3. Ceram. Int. 38(5), 3829–3834 (2012)

    Article  CAS  Google Scholar 

  36. S. Chu et al., Investigation of doping effect on electrical leakage behavior of BiFeO3 ceramics. J. Alloys Compd. 689, 475–480 (2016)

    Article  CAS  Google Scholar 

  37. H. Borkar, M. Tomar, V. Gupta, J.F. Scott, A. Kumar, Anomalous change in leakage and displacement currents after electrical poling on lead-free ferroelectric ceramics. Appl. Phys. Lett. 107(12), 122904 (2015)

    Article  Google Scholar 

  38. T. Kawae, Y. Terauchi, H. Tsuda, M. Kumeda, A. Morimoto, Improved leakage and ferroelectric properties of Mn and Ti codoped BiFeO3 thin films. Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3098408

    Article  Google Scholar 

  39. G.W. Pabst, L.W. Martin, Y.-H. Chu, R. Ramesh, Leakage mechanisms in BiFeO3 thin films. Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2535663

    Article  Google Scholar 

  40. M. Abushad, W. Khan, S. Naseem, S. Husain, M. Nadeem, A. Ansari, Influence of Mn doping on microstructure, optical, dielectric and magnetic properties of BiFeO3 nanoceramics synthesized via sol–gel method. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.01.035

    Article  Google Scholar 

  41. R. Moos, W. Menesklou et al., Hall mobility of undoped n-type conducting strontium titanate single crystals between 19 K and 1373 K. Appl. Phys. A (1995). https://doi.org/10.1007/BF01540113

    Article  Google Scholar 

  42. C. Lee, J. Destry, J.L. Brebner, Optical absorption and transport in semiconducting SrTiO3. Phys. Rev. B (1975). https://doi.org/10.1103/PhysRevB.11.2299

    Article  Google Scholar 

  43. R. Rajesh, N.V. Giridharan, K.R. Kumar, C. Karthika, Effect of Mn doping on magnetodielectric properties of polycrystalline BiFeO3 ceramics. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.156981

    Article  Google Scholar 

  44. J.D. Bucci, B.K. Robertson, W.J. James, The precision determination of the lattice parameters and the coefficients of thermal expansion of BiFeO3. J. Appl. Crystallogr. 5(3), 187–191 (1972)

    Article  CAS  Google Scholar 

  45. G.A. Gehring, On the microscopic theory of the magnetoelectric effect. Ferroelectrics. 161(1), 275–285 (1994)

    Article  CAS  Google Scholar 

  46. J. Singh, A. Agarwal, S. Sanghi, T. Bhasin, M. Yadav, U. Bhakar, Holmium induced structural transformation and improved dielectric and magnetic properties in Bi0.80La0.20FeO3 multiferroics. J. Magn. Magn. Mater. 487, 165337 (2019)

    Article  CAS  Google Scholar 

  47. K. Vijayanandhini, C. Simon, V. Pralong, V. Caignaert, B. Raveau, Spin glass to cluster glass transition in geometrically frustrated CaBaFe4-xLixO7 ferrimagnets. Phys. Rev. B 79(22), 224407 (2009)

    Article  Google Scholar 

  48. A. Dhahri, J. Laifi, S. Gouadria, M. Elhadi, E. Dhahri, E.K. Hlil, Influence of Ni content on structural, magnetocaloric and electrical properties in manganite La0.6Ba0.2Sr0.2mn1-xnixO3 (0 ≤ x ≤ 0.1) type perovskites. RSC Adv. 12(7), 3935–3947 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. J. Wu, C. Leighton, Glassy ferromagnetism and magnetic phase separation in La1-xsrxCoO3. Phys. Rev. B 67(17), 174408 (2003)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this research work. FG performed analysis and manuscript writing. Investigation and review and supervision were done by AL and NA. Validation and supervision were executed by MEM and HK. All authors read and approved the final manuscript.

Corresponding author

Correspondence to F. Gadhoumi.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadhoumi, F., Lahmar, A., Abdelmoula, N. et al. Impacts of substitution of BaTiO3 on structure, dielectric, transport, and magnetic properties of multiferroic BiFe0.5Mn0.5O3. J Mater Sci: Mater Electron 35, 569 (2024). https://doi.org/10.1007/s10854-024-12294-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12294-0

Navigation