Skip to main content
Log in

One step synthesis, optimization and growth mechanism carambola fruit shaped CuO nanostructures: electrochromic performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Micro and nanostructures with well-defined shape have attracted great interest due to their novel properties and diverging applications. Herein the one step simple sonochemical method for the synthesis of carambola fruit shaped and spindle shaped semiconducting copper oxide nanostructures are described. The pH concentration and the reaction time have been varied in order to find the optimized condition in which spindle shaped and carambola fruit shaped CuO nanoparticles are obtained. Also the effect of pH and reaction time on the properties of CuO nanostructures have been investigated and reported. The possible growth mechanism for the carambola fruit shaped structures has also been discussed. The prepared samples have been characterized using scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and UV–visible spectrophotometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Wang, J.Z. Xu, J.J. Zhu, H.Y. Chen, Preparation of CuO nanoparticles by microwave irradiation. J. Cryst. Growth 244, 88–94 (2002)

    Article  Google Scholar 

  2. E.C. Scher, L. Manna, A.P. Alivisatos, Shape control and applications of nanocrystals. Philos. Trans. R. Soc. Lond. Ser. A. 361, 241–257 (2003)

    Article  Google Scholar 

  3. S. Link, M.A. El-Sayed, Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 54, 331–366 (2003)

    Article  Google Scholar 

  4. Y. Wang, M. Li, Hydrothermal synthesis of single-crystalline hexagonal prism ZnO Nanorods. Mater. Lett. 60, 266–269 (2006)

    Article  Google Scholar 

  5. H.M. Xiao, L.P. Zhu, X.M. Liu, S.Y. Fu, Anomalous ferromagnetic behavior of CuO nanorods synthesized via hydrothermal method. Solid State Commun. 141, 431–435 (2007)

    Article  Google Scholar 

  6. K.W. Commander, A. Prosperetti, Linear pressure waves in bubbly liquids: comparison between theory and experiments. J. Acoust. Soc. Am. 85(2), 732–746 (1988)

    Article  Google Scholar 

  7. X. Zheng, X. Zhang, Z. Fang, X. Wang, S. Wang, S. Wu, Characterization and catalysis studies of CuO/CeO2 model catalysts. Catal. Commun. 7, 701–704 (2006)

    Article  Google Scholar 

  8. O. Akhavan, E. Ghaderi, Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts. Surf. Coat. Technol. 205, 219–223 (2010)

    Article  Google Scholar 

  9. D. Gopalakrishna, K. Vijayalakshmin, C. Ravidhas, Effect of annealing on the properties of nanostructured CuO thin films for enhanced ethanol sensitivity. Ceram. Int. 39, 7685–7691 (2013)

    Article  Google Scholar 

  10. K.C. Sanal, L.S. Vikas, M.K. Jayaraj, Room temperature deposited transparent p-channel CuO thin film transistors. Appl. Surf. Sci. 297, 153–157 (2014)

    Article  Google Scholar 

  11. S.K. Kumar, S. Suresh, S. Murugesan, S.P. Raj, CuO thin films made of nanofibers for solar selective absorber applications. Sol. Energy. 94, 299–304 (2013)

    Article  Google Scholar 

  12. A. Rahnama, M. Gharagozlou, A.R. Gardeshzadeh, Comparative study of copper precursors for synthesis of CuO nanoparticles by ultrasonic-assisted thermal decomposition method. J. Indian Chem. Soc. 90, 271–277 (2013)

    Google Scholar 

  13. I. Mohammadpoor-Baltork, V. Mirkhani, M. Moghadam, S. Tangestaninejad, M.A. Zolfigol, M.A. Alibeik, A.R. Khosropour, H. Kargar, S.F. Hojati, Silica sulfuric acid: a versatile and reusable heterogeneous catalyst for the synthesis of oxazolines and imidazolines under various reaction conditions. Catal. Commun. 9, 894–901 (2008)

    Article  Google Scholar 

  14. M.H. Entezari, P. Kruus, Effect of frequency on sonochemical reactions II. Temperature and intensity effects. Ultrason. Sonochemistry 3, 19–24 (1996)

    Article  Google Scholar 

  15. M.H. Lim, S.H. Kim, Y.K. Kim, J. Khim, Sonolysis of chlorinated compounds in aqueous solution. Ultrason. Sonochemistry 14, 93–98 (2007)

    Article  Google Scholar 

  16. M.H. Entezari, P. Kruus, R. Otson, The effect of frequency on sonochemical reactions III: dissociation of carbon disulfide. Ultrason. Sonochemistry 4, 49–54 (1997)

    Article  Google Scholar 

  17. S. Findik, G. Gunduz, E. Gunduz, Direct sonication of acetic acid in aqueous solutions. Ultrason. Sonochemistry 13, 203–207 (2006)

    Article  Google Scholar 

  18. M. Sivakumar, A. Gedanken, Insights into the sonochemical decomposition of Fe (CO)5: theoretical and experimental understanding of the role of molar concentration and power density on the reaction yield. Ultrason. Sonochemistry 11, 373–378 (2004)

    Google Scholar 

  19. M.V. Landau, L. Vradman, M. Herskowitz, Y. Koltypin, Ultrasonically controlled deposition-precipitation: Co–Mo HDS catalysis on wide-pore MCM material. J. Catal. 201, 22–36 (2001)

    Article  Google Scholar 

  20. H. Wang, Y.N. Lu, J.J. Zhu, H.Y. Chen, Sonochemical fabrication and characterization of stibnite nanorods. Inorg. Chem. 42, 6404–6411 (2003)

    Article  Google Scholar 

  21. J.H. Zhang, Z. Chen, Z.L. Wang, N.B. Ming, Sonochemical method for the synthesis of antimony sulfide microcrystallites with controllable morphology. J. Mater. Res. 18, 1804–1808 (2003)

    Article  Google Scholar 

  22. T. Ding, H.J.J. Zhu, J.M. Hong, Sonochemical preparation of HgSe nanoparticles by using different reductants. Mater. Lett. 57, 4445–4449 (2003)

    Article  Google Scholar 

  23. M.A. Alavi, A. Morsali, Synthesis of BaCO3 nanostructures by ultrasonic method. Ultrason. Sonochemistry 15, 833–838 (2008)

    Article  Google Scholar 

  24. L. Hashemi, A. Morsali, Synthesis and characterization of a new nano lead (II) two-dimensional coordination polymer by sonochemical method: a precursor to produce pure phase nano-sized lead(II) oxide. J. Inorg. Organomet. Polym. 20, 856–861 (2010)

    Article  Google Scholar 

  25. A. Dhayal Raj, P. Suresh Kumar, D. Mangalaraj, N. Ponpandian, A. Albert Irudayaraj, Q. Yang, Gas sensing behavior of high surface area Co3O4 micro/nano structures synthesized by simple sonication process. Sens. Lett. 10, 826–832 (2012)

    Article  Google Scholar 

  26. S. Bharathi, D. Nataraj, M. Seetha, D. Mangalaraj, N. Ponpandian, Y. Masuda, K. Senthil, K. Yong, Controlled growth of single-crystalline, nanostructured dendrites and snowflakes of a-Fe2O3: influence of the surfactant on the morphology and investigation of morphology dependent magnetic properties. Cryst. Eng. Comm. 12, 373–382 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks to the management of Sacred Heart College, Tirupattur for providing research facilities for conducting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Dhayal Raj or M. Thambidurai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, D.M.A., Dhayal Raj, A., Irudayaraj, A.A. et al. One step synthesis, optimization and growth mechanism carambola fruit shaped CuO nanostructures: electrochromic performance. J Mater Sci: Mater Electron 26, 659–665 (2015). https://doi.org/10.1007/s10854-014-2446-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2446-5

Keywords

Navigation