Skip to main content
Log in

Effect of reaction conditions on the morphology and optical properties of ZnO nanocrystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report a simple hydrothermal method at low temperature for synthesis of zinc oxide (ZnO) nanorods followed by ultrasonication. The samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), UV–Vis absorption spectrophotometer and photoluminescence (PL) spectroscopy. The XRD results shows the prepared ZnO nanocrystals are in wurtzite structure. TEM results indicate the growth of ZnO nanorods with increasing reaction stirring time and morphology also get affected after ultrasonication. PL studies also reveal the presence of defects considered as the main reason for the green emission in PL with increasing reaction time and blue shift in UV emission corresponds to reduction of tensile strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Appell, Nature 419, 553 (2002)

    Article  Google Scholar 

  2. L. Samuelson, Mater. Today 6, 22 (2003)

    Article  Google Scholar 

  3. M.H. Lai, M.W. Lee, Gou-Jen Wang, M.F. Tai, Int. J. Electrochem. Sci. 6, 2122 (2011)

    Google Scholar 

  4. Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 293, 1289 (2001)

    Article  Google Scholar 

  5. Z.L. Wang, Adv. Mater. 12, 1295 (2000)

    Article  Google Scholar 

  6. J. Hu, T.W. Odom, C.M. Lieber, Acc. Chem. Res. 32, 435 (1999)

    Article  Google Scholar 

  7. Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947 (2001)

    Article  Google Scholar 

  8. A. Ashrafi, C. Jagadish, J. Appl. Phys. 102, 071101 (2007)

    Article  Google Scholar 

  9. Z.L. Wang, Appl. Phys. A 88, 7 (2007)

    Article  Google Scholar 

  10. Z.L. Wang, J. Song, Science 312, 242 (2006)

    Article  Google Scholar 

  11. Z.L. Wang, Mater. Today 10, 20 (2007)

    Article  Google Scholar 

  12. C. Ronning, P.X. Gao, Y. Ding, Z.L. Wang, D. Schwen, Appl. Phys. Lett. 84, 783 (2004)

    Article  Google Scholar 

  13. X. Qingyu, L. Hartmann, Z. Shengqiang, A. Mcklich, M. Helm, G. Biehne, H. Hochmuth, M. Lorenz, M. Grundmann, H. Schmidt, Phys. Rev. Lett. 101, 076601 (2008)

    Article  Google Scholar 

  14. L. Yichun, Z. Mingya, S. Guiye, L. Yajun, H. Baiqu, Y. Guoliang, J Phys Chem B 112, 6484 (2008)

    Article  Google Scholar 

  15. S.M. Al-Hilli, R.T. Al-Mofarji, M. Willander, Appl. Phys. Lett. 89, 173119 (2006)

    Article  Google Scholar 

  16. P.W. Sadik, S.J. Pearton, D.P. Norton, E. Lambers, F. Ren, J. Appl. Phys. 101, 104514 (2007)

    Article  Google Scholar 

  17. H.A. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Cho, J. Appl. Phys. 105, 013502 (2009)

    Article  Google Scholar 

  18. C.Y. Geng, Y. Jiang, Y. Yao, X.M. Meng, J.A. Zapien, C.S. Lee, Y. Lifshitz, S.T. Lee, Adv. Funct. Mater. 14, 589 (2004)

    Article  Google Scholar 

  19. P.C. Kao, S.Y. Chu, B.J. Li, J.W. Chang, H.H. Huang, Y.C. Fang, R.C. Chang, J Alloys Compd 467, 342 (2009)

    Article  Google Scholar 

  20. J.H. Song, S. Xu, R.S. Yang, Z.Y. Gao, C.G. Hu, Z.L. Wang, J. Mater. Chem. 19, 9260 (2009)

    Article  Google Scholar 

  21. C. Weigand, M. Bergren, C. Ladam, P.E. Vullum, J.C. Walmsley, R. Fagerberg, T. Furtak, R. Collins, J. Grepstad, H. Weman, Funct Met Oxide Nanostruct 1174, 57 (2009)

    Google Scholar 

  22. G. Jia, Y. Wang, J. Yao, Digest J Nanomat Biostruct 7, 261 (2012)

    Google Scholar 

  23. W.Y. Wu, C.C. Yeh, J.M. Ting, J. Am. Ceram. Soc. 92, 2718 (2009)

    Article  Google Scholar 

  24. P.G. Li, W.H. Tang, X. Wang, J Alloys Compd 479, 634 (2009)

    Article  Google Scholar 

  25. G.L. Li, X.N. Peng, M.Y. Xie, L. Yu, L. Zhou, Mod Phys Lett 23, 1063 (2009)

    Article  Google Scholar 

  26. T.K. Jia, W.M. Wang, F. Long, Z.Y. Fu, H. Wang, Q.J. Zhang, J Alloys Compd 484, 410 (2009)

    Article  Google Scholar 

  27. S. Xu, N. Adiga, S. Ba, T. Dasqupta, C.F.J. Wu, Z.L. Wang, ACS Nano 3, 1803 (2009)

    Article  Google Scholar 

  28. H. Karami, E. Fakoori, J Nanomat 1155, 628203 (2011)

    Google Scholar 

  29. T. Ma, M. Guo, M. Zhang, X.D. Wang, J. Nanosci. Nanotechnol. 9, 5920 (2009)

    Article  Google Scholar 

  30. D.F. Zhang, L.D. Sun, J.L. Yin, C.H. Yan, R.M. Wang, J Phys Chem B 109, 8786 (2005)

    Article  Google Scholar 

  31. X.L. Zhang, Y.S. Kang, Inorg. Chem. 45, 4186 (2006)

    Article  Google Scholar 

  32. H.Y. Yanga, S.H. Leeb, T.W. Kim, Appl. Surf. Sci. 256, 6117 (2010)

    Article  Google Scholar 

  33. S. Brahma, K.J. Rao, S. Shivasankar, Indian Acad Sci 33, 89 (2010)

    Google Scholar 

  34. Q.R. Hu, S.L. Wang, P. Jiang, H. Xu, Y. Zhang, W.H. Tang, J Alloys Compd 496, 494 (2010)

    Article  Google Scholar 

  35. Q.R. Hu, S.L. Wang, W.H. Tang, Mater. Lett. 64, 1822 (2010)

    Article  Google Scholar 

  36. N.K. Hassan, M.R. Hashim, Y. Al-Douri, K. Al-Heuseen, Int. J. Electrochem. Sci. 7, 4625 (2012)

    Google Scholar 

  37. S.D. Shinde, G.E. Patil, D.D. Kajale, D.V. Ahire, V.B. Gaikwad, G.H. Jain, Int. J. Smart Sens. Intell. Syst. 5, 57 (2012)

    Google Scholar 

  38. Ekthammathat N, Thongtem T, Phuruangrat A, Thongtem S (2013) J Nanomater 208230

  39. N.S. Ridhuan, K.A. Razak, Z. Lockman, A.A. Aziz, PLoS ONE 7, e50405 (2012)

    Article  Google Scholar 

  40. K. Khun, Z.H. Ibupoto, M.S. Alsalhi, M. Atif, A.A. Ansari, M. Willander, Materials 6, 4361 (2013)

    Article  Google Scholar 

  41. S. Ubidillah, W.E. Juwana, B. Prabandono, A. Purwanto, Sci Iranica Trans F Nanotechnol 20, 2348 (2013)

    Google Scholar 

  42. Y. Qiu, D. Yang, J. Lei, H. Zhang, J. Ji, B. Yin, J. Bian, Y. Zhao, L. Hu, J. Mater. Sci.: Mater. Electron. 25, 2649 (2014)

    Google Scholar 

  43. K.H. Kim, K. Utashiro, Y. Abe, M. Kawamura, Int J Electochem Sci 9, 2080 (2014)

    Google Scholar 

  44. Tang Zi-Rong, Yin Xia, Zhang Yanhui, Xu Yi-Jun, RSC Adv 3, 5956 (2013)

    Article  Google Scholar 

  45. K.H. Kim, K. Utashiro, Y. Abe, M. Kawamura, Int. J. Electrochem. Sci. 9, 2080 (2014)

    Google Scholar 

  46. P. Kumbhakar, D. Singh, C.S. Tiwary, A.K. Mitra, Chalcogen 5, 387 (2008)

    Google Scholar 

  47. J. Zhang, L.D. Sun, C.S. Liao, C.H. Yang, Chem. Commun. 3, 262 (2002)

    Article  Google Scholar 

  48. X.Y. Zhang, J.Y. Dai, H.C. Ong, N. Wang, H.L. Chan, C.L. Choy, Chem. Phys. Lett. 393, 17 (2004)

    Article  Google Scholar 

  49. H. Zhang, D.R. Yang, Y.J. Ji, X.Y. Ma, J. Xu, D.L. Que, J Phys Chem B 108, 3955 (2004)

    Article  Google Scholar 

  50. F.A. Sigoli, M.R. Dwolos, M. Jafelicci, J Alloys Compd 263, 292 (1997)

    Article  Google Scholar 

  51. L.E. Brus, J Chem Phys 80, 4403 (1984)

    Article  Google Scholar 

  52. Y. Yang, X.H. Wang, C.K. Sun, L.T. Li, J. Appl. Phys. 105(9), 094304 (2009)

    Article  Google Scholar 

  53. B.K. Choi, D.H. Chang, Y.S. Yoon, S.J. Kng, J. Mater. Sci. 10854, 9036 (2006)

    Google Scholar 

Download references

Acknowledgments

The authors are very thankful to Dr. Sanjeev Aggarwal from Kurukshetra University, Kurukshetra for use of UV–Vis absorption Spectrophotometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenu Makkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makkar, M., Bhatti, H.S. & Singh, K. Effect of reaction conditions on the morphology and optical properties of ZnO nanocrystals. J Mater Sci: Mater Electron 25, 4822–4829 (2014). https://doi.org/10.1007/s10854-014-2239-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2239-x

Keywords

Navigation