Skip to main content
Log in

Steady-state and transient electron transport within the wide energy gap compound semiconductors gallium nitride and zinc oxide: an updated and critical review

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The wide energy gap compound semiconductors, gallium nitride and zinc oxide, are widely recognized as promising materials for novel electronic and optoelectronic device applications. As informed device design requires a firm grasp of the material properties of the underlying electronic materials, the electron transport that occurs within these wide energy gap compound semiconductors has been the focus of considerable study over the years. In an effort to provide some perspective on this rapidly evolving field, in this paper we review analyzes of the electron transport within the wide energy gap compound semiconductors, gallium nitride and zinc oxide. In particular, we discuss the evolution of the field, compare and contrast results determined by different researchers, and survey the current literature. In order to narrow the scope of this review, we will primarily focus on the electron transport within bulk wurtzite gallium nitride, zinc-blende gallium nitride, and wurtzite zinc oxide. The electron transport that occurs within bulk zinc-blende gallium arsenide will also be considered, albeit primarily for bench-marking purposes. Most of our discussion will focus on results obtained from our ensemble semi-classical three-valley Monte Carlo simulations of the electron transport within these materials, our results conforming with state-of-the-art wide energy gap compound semiconductor orthodoxy. A brief tutorial on the Monte Carlo electron transport simulation approach, this approach being used to generate the results presented herein, will also be featured. Steady-state and transient electron transport results are presented. We conclude our discussion by presenting some recent developments on the electron transport within these materials. The wurtzite gallium nitride and zinc-blende gallium arsenide results, being presented in a previous review article of ours (O’Leary et al. in J Mater Sci Mater Electron 17:87, 2006), are also presented herein for the sake of completeness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45

Similar content being viewed by others

Notes

  1. The earliest recorded studies on GaN, reported in the 1920s and 1930s, were performed on small crystals and powders [23]. Unfortunately, these materials were of insufficient quality for device applications. Thus, GaN remained a material of widely recognized but unrealized potential for many years. It was only when modern deposition approaches, such as molecular beam epitaxy and metal-organic chemical vapor deposition, were employed for the preparation of GaN that this material approached the levels of quality demanded of devices. Thus, intense interest into the material properties of GaN only really began in earnest in the early-1990s. While initial reports on the material properties of ZnO were made in the 1920s and 1930s, it was only much later that the quality of the material became sufficiently high that a diverse range of device applications could be considered. Accordingly, interest in the material properties of ZnO began in earnest in the early-2000s. Interest in both of these materials, and the device applications thus engendered, continues today.

  2. This requires that the electron ensemble has settled on a new equilibrium state. By an equilibrium state, however, we are not necessarily referring to thermal equilibrium, thermal equilibrium only being achieved in the absence of an applied electric field.

  3. By electron drift velocity, we are referring to the average electron velocity, determined by statistically averaging over the entire electron ensemble.

  4. The Monte Carlo approach to simulating the electron transport within semiconductors has been employed by many authors. A Monte Carlo electron transport simulation resource, with code included, may be found at https://nanohub.org/resources/moca. Further information about the Monte Carlo approach, beyond the electron transport context, may also be found at http://www.codeproject.com/Articles/767997/Parallelised-Monte-Carlo-Algorithms-sharp and http://www.codeproject.com/Articles/32654/Monte-Carlo-Simulation?q=Monte+Carlo+code.

  5. The conduction band minima may be degenerate, i.e., the same conduction band energy minima may be achieved at multiple points throughout the conduction band band structure. Valley 1 corresponds to those conduction band minima that are at the lowest energy. Valleys 2 and 3 correspond to those conduction band minima at the second most and third most lowest energy minima, respectively.

  6. Albrecht et al. [82] generalize this relationship in order to include a second-order non-parabolocity coefficient that reduces to the traditional Kane model in the limit that this second-order non-parabolocity coefficient is set to zero.

  7. The longitudinal and transverse sound velocities are equal to

    $$\sqrt{\frac{C_{l}}{\rho }} \quad \hbox {and}\quad \sqrt{\frac{C_{t}}{\rho }},$$

    respectively, where \(C_{l}\) and \(C_{t}\) denote the respective elastic constants and \(\rho \) represents the density.

  8. Piezoelectric scattering is treated using the well established zinc-blende scattering rates, and thus, a suitably transformed piezoelectric constant, \(\hbox {e}_{14}\), must be selected. This may be achieved through the transformation suggested by Bykhovski et al. [149, 150]. The \(\hbox {e}_{14}\) value selected for wurtzite GaN is that suggested by Chin et al. [86]. The \(\hbox {e}_{14}\) values selected for zinc-blende GaN and wurtzite ZnO is that corresponding to wurtzite GaN.

  9. All inter-valley deformation potentials are set to \(10^{9}\) eV/cm, following the approach of Gelmont et al. [85].

  10. We follow the approach of Bhapkar and Shur [90], and set the inter-valley phonon energies equal to the optical phonon energy, a relationship which holds approximately for the case of GaAs [151].

  11. The band structures are specified according to the three lowest energy conduction band valley minima, each minima corresponding to a valley, their locations in the band structures, the degeneracy of each valley, the effective mass of the electrons at each valley minimum, and the non-parabolicity coefficient corresponding to each valley being specified.

  12. For the case of direct-gap semiconductors, the \(E_{o}\) energy gap corresponds with the regular energy gap, \(E_{g}\). For the case of indirect-gap semiconductors, however, the \(E_{o}\) energy gap exceeds \(E_{g}\).

  13. Interest in the material properties of ZnO was ignited later than that associated with GaN, primarily on account of material quality considerations, i.e., high-quality GaN was prepared earlier, and a lack of familiarity with means of effectively handling II–VI compound semiconductors, many GaN processing techniques being borrowed directly from the GaAs case.

References

  1. M.N. Yoder, IEEE Trans. Electron Devices 43, 1633 (1996)

    Google Scholar 

  2. D. Jones, A.H. Lettington, Solid State Commun. 11, 701 (1972)

    Google Scholar 

  3. P. Das, D.K. Ferry, Solid State Electron. 19, 851 (1976)

    Google Scholar 

  4. B.J. Baliga, IEEE Electron Device Lett. 10, 455 (1989)

    Google Scholar 

  5. M. Bhatnagar, B.J. Baliga, IEEE Trans. Electron Devices 40, 645 (1993)

    Google Scholar 

  6. T.P. Chow, R. Tyagi, IEEE Trans. Electron Devices 41, 1481 (1994)

    Google Scholar 

  7. J.W. Milligan, S. Sheppard, W. Pribble, Y.-F. Wu, St. G. Müller, J.W. Palmour, in Proceedings of the 2007 IEEE Radar Conference (2007), p. 960

  8. A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y.M. Chong, W.J. Zhang, R. Dahal, J.Y. Lin, H.X. Jiang, H.A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J.C. de Jaeger, B. Giordanengo, M. Richter, F. Scholze, J.F. Hochedez, Diamond Rel. Mater. 18, 860 (2009)

    Google Scholar 

  9. D.K. Schroder, Int. J. High Speed Electron. Syst. 21, 1250009 (2012)

    Google Scholar 

  10. D.K. Ferry, Phys. Rev. B 12, 2361 (1975)

    Google Scholar 

  11. M. Wraback, H. Shen, J.C. Carrano, T. Li, J.C. Campbell, M.J. Schurman, I.T. Ferguson, Appl. Phys. Lett. 76, 1155 (2000)

    Google Scholar 

  12. M. Wraback, H. Shen, J.C. Carrano, C.J. Collins, J.C. Campbell, R.D. Dupuis, M.J. Schurman, I.T. Ferguson, Appl. Phys. Lett. 79, 1303 (2001)

    Google Scholar 

  13. M. Wraback, H. Shen, S. Rudin, Proc. SPIE 4646, 117 (2002)

  14. S. Adachi, Properties of Group-IV, III–V and II–VI Semiconductors (Wiley, Chichester, 2005)

    Google Scholar 

  15. M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur (eds.), Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley, New York, 2001)

    Google Scholar 

  16. E.O. Johnson, Proc. IEEE Int. Conv. Record 13, 27 (1965)

  17. E.O. Johnson, RCA Rev. 26, 163 (1965)

    Google Scholar 

  18. R.W. Keyes, Proc. IEEE 60, 225 (1972)

    Google Scholar 

  19. J.L. Hudgins, G.S. Simin, E. Santi, M.A. Khan, IEEE Trans. Power Electron. 18, 907 (2003)

    Google Scholar 

  20. L.-M. Wang, in Proceedings of IEEE 25th International Conference on Microelectron. (2006), p. 615

  21. D. Shaddock, L. Meyer, J. Tucker, S. Dasgupta, R. Fillion, P. Bronecke, L. Yorinks, P. Kraft, in Proceedings of 19th IEEE Semiconductor Thermal Symposium (2003), p. 42

  22. H. Jain, S. Rajawat, P. Agrawal, Proceedings of International Conference on Microelectron. 2008 (2008), p. 878

  23. S. Strite, H. Morkoç, J. Vac. Sci. Technol. B 10, 1237 (1992)

    Google Scholar 

  24. H. Morkoç, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, M. Burns, J. Appl. Phys. 76, 1363 (1994)

    Google Scholar 

  25. S.N. Mohammad, A.A. Salvador, H. Morkoç, Proc. IEEE 83, 1306 (1995)

    Google Scholar 

  26. S.N. Mohammad, H. Morkoç, Prog. Quantum Electron. 20, 361 (1996)

    Google Scholar 

  27. S.J. Pearton, J.C. Zolper, R.J. Shul, F. Ren, J. Appl. Phys. 86, 1 (1999)

    Google Scholar 

  28. F. Ren, J.C. Zolper (eds.), Wide Energy Bandgap Electronic Devices (World Scientific, River Edge, 2003)

    Google Scholar 

  29. M.S. Shur, R.F. Davis (eds.), GaN-based Materials and Devices: Growth, Fabrication, Characterization and Performance (World Scientific, River Edge, 2004)

    Google Scholar 

  30. C. Liu, F. Yun, H. Morkoç, J. Mater. Sci.: Mater. Electron. 16, 555 (2005)

    Google Scholar 

  31. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Google Scholar 

  32. A. Ashrafi, C. Jagadish, J. Appl. Phys. 102, 071101 (2007)

    Google Scholar 

  33. M. Bockowski, Cryst. Res. Technol. 42, 1162 (2007)

    Google Scholar 

  34. R. Brazis, R. Raguotis, Phys. Status Solidi C 6, 2674 (2009)

    Google Scholar 

  35. R.P. Davies, C.R. Abernathy, S.J. Pearton, D.P. Norton, M.P. Ivill, F. Ren, Chem. Eng. Commun. 196, 1030 (2009)

    Google Scholar 

  36. J.A. del Alamo, J. Joh, Micro. Reliability 49, 1200 (2009)

    Google Scholar 

  37. H. Morkoç, Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley, Weinheim, 2009)

    Google Scholar 

  38. Y.-S. Choi, J.-W. Kang, D.-K. Hwang, S.-J. Park, IEEE Trans. Electron Devices 57, 26 (2010)

    Google Scholar 

  39. A. Katz, M. Franco, IEEE Micro. Mag. 11, S24 (2010)

    Google Scholar 

  40. H. Morkoç, Proc. IEEE 98, 1113 (2010)

    Google Scholar 

  41. Ü. Özgür, D. Hofstetter, H. Morkoç, Proc. IEEE 98, 1255 (2010)

    Google Scholar 

  42. S.J. Pearton, C.R. Abernathy, F. Ren, Gallium Nitride Processing for Electronics, Sensors and Spintronics (Springer, New York, 2010)

    Google Scholar 

  43. M. Razeghi, IEEE Photon. J. 3, 263 (2011)

    Google Scholar 

  44. R.S. Pengelly, S.M. Wood, J.W. Milligan, S.T. Sheppard, W.L. Pribble, IEEE Trans. Micro. Theor. Tech. 60, 1764 (2012)

    Google Scholar 

  45. Y. Hao, J. Zhang, B. Shen, X. Liu, J. Semicond. 33, 081001 (2012)

    Google Scholar 

  46. F. Scholz, Semicond. Sci. Tech. 27, 024002 (2012)

    Google Scholar 

  47. B.J. Baliga, Semicond. Sci. Tech. 28, 074011 (2013)

    Google Scholar 

  48. S. Colangeli, A. Bentini, W. Chiccognani, E. Limiti, A. Nanni, IEEE Trans. Electron Devices 60, 3238 (2013)

    Google Scholar 

  49. T. Kachi, Electron. Express 10, 1 (2013)

    Google Scholar 

  50. S. Nakamura, M.R. Krames, Proc. IEEE 101, 2211 (2013)

    Google Scholar 

  51. S.J. Pearton, R. Deist, F. Ren, L. Liu, A.Y. Polyakov, J. Kim, J. Vac. Sci. Technol. A 31, 050801 (2013)

    Google Scholar 

  52. D.W. Runton, B. Trabert, J.B. Shealy, R. Vetury, IEEE Micro. Mag. 14, 82 (2013)

    Google Scholar 

  53. J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, J. Rebollo, IEEE Trans. Power Electron. 29, 2155 (2014)

    Google Scholar 

  54. H.P. Maruska, J.J. Tietjen, Appl. Phys. Lett. 15, 327 (1969)

    Google Scholar 

  55. D. Visalli, M. Van Hove, P. Srivastava, J. Derluyn, J. Das, M. Leys, S. Degroote, K. Cheng, M. Germain, G. Borghs, Appl. Phys. Lett. 97, 113501 (2010)

    Google Scholar 

  56. I.B. Rowena, S.L. Selvaraj, T. Egawa, IEEE Electron Dev. Lett. 32, 1534 (2011)

    Google Scholar 

  57. B.A. Danilchenko, I.A. Obukhov, T. Paszkiewicz, S. Wolski, A. Jeżowski, Solid State Commun. 144, 114 (2007)

    Google Scholar 

  58. K. Jagannadham, E.A. Berkman, N. Elmasry, J. Vac. Sci. Technol. A 26, 375 (2008)

    Google Scholar 

  59. B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, J. Appl. Phys. 85, 7727 (1999)

    Google Scholar 

  60. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Solid State Commun. 118, 79 (2001)

    Google Scholar 

  61. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Electron. Mater. 32, 327 (2003)

    Google Scholar 

  62. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Mater. Sci.: Mater. Electron. 17, 87 (2006)

    Google Scholar 

  63. S. Nakamura, Mater. Res. Soc. Bull. 22, 29 (1997)

    Google Scholar 

  64. M.S. Shur, M.A. Khan, Mater. Res. Soc. Bull. 22, 44 (1997)

    Google Scholar 

  65. A.A. Burk Jr., M.J. O’Loughlin, R.R. Siergiej, A.K. Agarwal, S. Sriram, R.C. Clarke, M.F. MacMillan, V. Balakrishna, C.D. Brandt, Solid State Electron. 43, 1459 (1999)

    Google Scholar 

  66. S. Nakamura, S.F. Chichibu (eds.), Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes (Taylor and Francis, New York, 2000)

    Google Scholar 

  67. M.A. Khan, J.W. Yang, W. Knap, E. Frayssinet, X. Hu, G. Simin, P. Prystawko, M. Leszczynski, I. Grzegory, S. Porowski, R. Gaska, M.S. Shur, B. Beaumont, M. Teisseire, G. Neu, Appl. Phys. Lett. 76, 3807 (2000)

    Google Scholar 

  68. S. Nakamura, S. Pearton, G. Fasol, The Blue Laser Diode: The Complete Story (Springer, New York, 2000)

    Google Scholar 

  69. M. Umeno, T. Egawa, H. Ishikawa, Mater. Sci. Semicond. Process. 4, 459 (2001)

    Google Scholar 

  70. A. Krost, A. Dadgar, Phys. Status Solidi A 194, 361 (2002)

    Google Scholar 

  71. A. Z̆ukauskas, M.S. Shur, R. Gaska, Introduction to Solid–State Lighting (Wiley, New York, 2002)

    Google Scholar 

  72. X. Hu, J. Deng, N. Pala, R. Gaska, M.S. Shur, C.Q. Chen, J. Yang, G. Simin, M.A. Khan, J.C. Rojo, L.J. Schowalter, Appl. Phys. Lett. 82, 1299 (2003)

    Google Scholar 

  73. A. Jiménez, Z. Bougrioua, J.M. Tirado, A.F. Braña, E. Calleja, E. Muñoz, I. Moerman, Appl. Phys. Lett. 82, 4827 (2003)

    Google Scholar 

  74. W. Lu, V. Kumar, E.L. Piner, I. Adesida, IEEE Trans. Electron Devices 50, 1069 (2003)

    Google Scholar 

  75. C.L. Tseng, M.J. Youh, G.P. Moore, M.A. Hopkins, R. Stevens, W.N. Wang, Appl. Phys. Lett. 83, 3677 (2003)

    Google Scholar 

  76. J.C. Carrano, A. Z̆ukauskas (eds.), Optically Based Biological and Chemical Sensing for Defense (SPIE, Bellingham, 2004)

    Google Scholar 

  77. M.S. Shur, A. Z̆ukauskas (eds.), UV Solid–State Light Emitters and Detectors (Kluwer, Boston, 2004)

    Google Scholar 

  78. M. Shur, M. Shatalov, A. Dobrinsky, R. Gaska, Advances in GaN and ZnO-based Thin Film, Bulk, and Nanostructured Materials and Devices, in Materials and Devices Series in Materials Science, ed. by S. Pearton (Springer, Berlin, 2012), pp. 83–120

    Google Scholar 

  79. D.H. Levy, S.F. Nelson, J. Vac. Sci. Technol. A 30, 018501 (2012)

    Google Scholar 

  80. H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Moroç, Super. Micro. 48, 458 (2010)

    Google Scholar 

  81. C.-K. Yang, K.S. Dy, Solid State Commun. 88, 491 (1993)

    Google Scholar 

  82. J.D. Albrecht, P.P. Ruden, S. Limpijumnong, W.R.L. Lambrecht, K.F. Brennan, J. Appl. Phys. 86, 6864 (1999)

    Google Scholar 

  83. J.F. Muth, R.M. Kolbas, A.K. Sharma, S. Oktyabrsky, J. Narayan, J. Appl. Phys. 85, 7884 (1999)

    Google Scholar 

  84. M.A. Littlejohn, J.R. Hauser, T.H. Glisson, Appl. Phys. Lett. 26, 625 (1975)

    Google Scholar 

  85. B. Gelmont, K. Kim, M. Shur, J. Appl. Phys. 74, 1818 (1993)

    Google Scholar 

  86. V.W.L. Chin, T.L. Tansley, T. Osotchan, J. Appl. Phys. 75, 7365 (1994)

    Google Scholar 

  87. J. Kolník, İ.H. Oğuzman, K.F. Brennan, R. Wang, P.P. Ruden, Y. Wang, J. Appl. Phys. 78, 1033 (1995)

    Google Scholar 

  88. N.S. Mansour, K.W. Kim, M.A. Littlejohn, J. Appl. Phys. 77, 2834 (1995)

    Google Scholar 

  89. M. Shur, B. Gelmont, M.A. Khan, J. Electron. Mater. 25, 777 (1996)

    Google Scholar 

  90. U.V. Bhapkar, M.S. Shur, J. Appl. Phys. 82, 1649 (1997)

    Google Scholar 

  91. E.G. Brazel, M.A. Chin, V. Narayanamurti, D. Kapolnek, E.J. Tarsa, S.P. DenBaars, Appl. Phys. Lett. 70, 330 (1997)

    Google Scholar 

  92. B.E. Foutz, L.F. Eastman, U.V. Bhapkar, M.S. Shur, Appl. Phys. Lett. 70, 2849 (1997)

    Google Scholar 

  93. J.D. Albrecht, R.P. Wang, P.P. Ruden, M. Farahmand, K.F. Brennan, J. Appl. Phys. 83, 1446 (1998)

    Google Scholar 

  94. J.D. Albrecht, R.P. Wang, P.P. Ruden, M. Farahmand, K.F. Brennan, J. Appl. Phys. 83, 4777 (1998)

    Google Scholar 

  95. J.D. Albrecht, R. Wang, P.P. Ruden, M. Farahmand, E. Bellotti, K.F. Brennan, Mater. Res. Symp. Proc. 482, 815 (1998)

    Google Scholar 

  96. M.S. Krishnan, N. Goldsman, A. Christou, J. Appl. Phys. 83, 5896 (1998)

    Google Scholar 

  97. D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Solid State Commun. 105, 399 (1998)

    Google Scholar 

  98. R. Oberhuber, G. Zandler, P. Vogl, Appl. Phys. Lett. 73, 818 (1998)

    Google Scholar 

  99. S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, L.F. Eastman, J. Appl. Phys. 83, 826 (1998)

    Google Scholar 

  100. S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, L.F. Eastman, Solid State Commun. 105, 621 (1998)

    Google Scholar 

  101. N.G. Weimann, L.F. Eastman, D. Doppalapudi, H.M. Ng, T.D. Moustakas, J. Appl. Phys. 83, 3656 (1998)

    Google Scholar 

  102. N.A. Zakhleniuk, C.R. Bennett, B.K. Ridley, M. Babiker, Appl. Phys. Lett. 73, 2485 (1998)

    Google Scholar 

  103. B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, Mater. Res. Symp. Proc. 572, 445 (1999)

    Google Scholar 

  104. N. Balkan, M.C. Arikan, S. Gokden, V. Tilak, B. Schaff, R.J. Shealy, J. Phys: Condens. Matt. 14, 3457 (2002)

    Google Scholar 

  105. S. Gokden, N. Balkan, B.K. Ridley, Semicond. Sci. Technol. 18, 206 (2003)

    Google Scholar 

  106. S. Gökden, Phys. E 23, 198 (2004)

    Google Scholar 

  107. B.K. Ridley, W.J. Schaff, L.F. Eastman, J. Appl. Phys. 96, 1499 (2004)

    Google Scholar 

  108. B. Benbakhti, M. Rousseau, A. Soltani, J.-C. de Jaeger, IEEE Trans. Electron Devices 53, 2237 (2006)

    Google Scholar 

  109. B. Guo, U. Ravaioli, M. Staedele, Comp. Phys. Commun. 175, 482 (2006)

    Google Scholar 

  110. S. Kabra, H. Kaur, S. Haldar, M. Gupta, R.S. Gupta, Phys. Status Solidi C 3, 2350 (2006)

    Google Scholar 

  111. C.H. Oxley, M.J. Uren, A. Coates, D.G. Hayes, IEEE Trans. Electron Devices 53, 565 (2006)

    Google Scholar 

  112. F. Bertazzi, M. Goano, E. Bellotti, J. Electron. Mater. 36, 857 (2007)

    Google Scholar 

  113. J. Khurgin, Y.J. Ding, D. Jena, Appl. Phys. Lett. 91, 252104 (2007)

    Google Scholar 

  114. M. Ramonas, A. Matulionis, L.F. Eastman, Semicond. Sci. Technol. 22, 875 (2007)

    Google Scholar 

  115. Y. Tomita, H. Ikegami, H.I. Fujishiro, Phys. Status Solidi C 4, 2695 (2007)

    Google Scholar 

  116. S. Yamakawa, M. Saraniti, S.M. Goodnick, Proc. SPIE 6471, 64710M (2007)

  117. Z. Yarar, J. Electron. Mater. 40, 466 (2011)

    Google Scholar 

  118. E. Furno, F. Bertazzi, M. Goano, G. Ghione, E. Bellotti, Solid State Electron. 52, 1796 (2008)

    Google Scholar 

  119. A. Matulionis, J. Liberis, E. S̆ermuks̆nis, J. Xie, J.H. Leach, M. Wu, H. Morkoç, Semicond. Sci. Technol. 23, 075048 (2008)

    Google Scholar 

  120. F. Betazzi, E. Bellotti, E. Furno, M. Goano, J. Electron. Mater. 38, 1677 (2009)

    Google Scholar 

  121. A. Hamdoune, N.-E.C. Sari, Phys. Procedia 2, 905 (2009)

    Google Scholar 

  122. H. Arabshahi, M.R. Rokn-Abadi, F.B. Bagh-Siyahi, Res. J. Appl. Sci. 5, 215 (2010)

    Google Scholar 

  123. F. Bertazzi, M. Penna, M. Goano, E . Bellotti, Proc. SPIE 7603, 760303 (2010)

  124. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Solid State Commun. 150, 2182 (2010)

    Google Scholar 

  125. W.A. Hadi, S.K. O’Leary, M.S. Shur, L.F. Eastman, Solid State Commun. 151, 874 (2011)

    Google Scholar 

  126. W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 112, 033720 (2012)

    Google Scholar 

  127. W.A. Hadi, S. Chowdhury, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 112, 123722 (2012)

    Google Scholar 

  128. E. Baghani, S.K. O’Leary, J. Appl. Phys. 114, 023703 (2013)

    Google Scholar 

  129. W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 24, 2 (2013)

    Google Scholar 

  130. S. Shishehchi, F. Bertazzi, E. Bellotti, Proc. SPIE 8619, 86190H (2013)

  131. J.H. Buß, J. Rudolph, T. Schupp, D.J. As, K. Lischka, D. Hägele, Appl. Phys. Lett. 97, 062101 (2010)

    Google Scholar 

  132. A.W. Wood, R.R. Collino, B.L. Cardozo, F. Naab, Y.Q. Wang, R.S. Goldman, J. Appl. Phys. 110, 124307 (2011)

    Google Scholar 

  133. B.R. Nag, Electron Transport in Compound Semiconductors (Springer, Berlin, 1980)

    Google Scholar 

  134. M. Shur, Physics of Semiconductor Devices (Prentice-Hall, Englewood Cliffs, 1990)

    Google Scholar 

  135. U.K. Mishra, J. Singh, Semiconductor Device Physics and Design (Springer, Dordrecht, 2008)

    Google Scholar 

  136. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)

    Google Scholar 

  137. C. Kittel, Introduction to Solid–State Physics, 8th edn. (Wiley, New York, 2005)

    Google Scholar 

  138. D.C. Look, J.R. Sizelove, S. Keller, Y.F. Wu, U.K. Mishra, S.P. DenBaars, Solid State Commun. 102, 297 (1997)

    Google Scholar 

  139. E.M. Conwell, M.O. Vassell, IEEE Trans. Electron Devices 13, 22 (1966)

    Google Scholar 

  140. P.A. Sandborn, A. Rao, P.A. Blakey, IEEE Trans. Electron Devices 36, 1244 (1989)

    Google Scholar 

  141. D.K. Ferry, C. Jacoboni (eds.), Quantum Transport in Semiconductors (Plenum Press, New York, 1992)

    Google Scholar 

  142. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd edn. (McGraw-Hill, New York, 1991)

    Google Scholar 

  143. R.M. Yorston, J. Comput. Phys. 64, 177 (1986)

    Google Scholar 

  144. W. Fawcett, A.D. Boardman, S. Swain, J. Phys. Chem. Solids 31, 1963 (1970)

    Google Scholar 

  145. B.K. Ridley, Quantum Processes in Semiconductors, 3rd edn. (Oxford, New York, 1993)

    Google Scholar 

  146. C. Jacoboni, L. Reggiani, Rev. Mod. Phys. 55, 645 (1983)

    Google Scholar 

  147. C. Jacoboni, P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Springer, New York, 1989)

    Google Scholar 

  148. G.U. Jensen, B. Lund, T.A. Fjeldly, M. Shur, Comp. Phys. Commun. 67, 1 (1991)

    Google Scholar 

  149. A. Bykhovski, B. Gelmont, M. Shur, A. Khan, J. Appl. Phys. 77, 1616 (1995)

    Google Scholar 

  150. A.D. Bykhovski, V.V. Kaminski, M.S. Shur, Q.C. Chen, M.A. Khan, Appl. Phys. Lett. 68, 818 (1996)

    Google Scholar 

  151. M.A. Littlejohn, J.R. Hauser, T.H. Glisson, J. Appl. Phys. 48, 4587 (1977)

    Google Scholar 

  152. W.R.L. Lambrecht, B. Segall, in Properties of Group III Nitrides, No. 11 EMIS Datareviews Series, ed. by J. H. Edgar (Inspec, London, 1994), Chapter 4

  153. J.S. Blakemore, J. Appl. Phys. 53, R123 (1982)

    Google Scholar 

  154. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, 2007)

    Google Scholar 

  155. P. Lugli, D.K. Ferry, IEEE Trans. Electron Devices 32, 2431 (1985)

    Google Scholar 

  156. K. Seeger, Semiconductor Physics: An Introduction, 9th edn. (Springer, Berlin, 2004)

    Google Scholar 

  157. B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, U.V. Bhapkar, Mater. Res. Soc. Symp. Proc. 482, 821 (1998)

    Google Scholar 

  158. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, U.V. Bhapkar, Mater. Res. Soc. Symp. Proc. 482, 845 (1998)

    Google Scholar 

  159. B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, Mater. Res. Soc. Symp. Proc. 512, 555 (1998)

    Google Scholar 

  160. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Appl. Phys. Lett. 87, 222103 (2005)

    Google Scholar 

  161. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Appl. Phys. Lett. 88, 152113 (2006)

    Google Scholar 

  162. W.A. Hadi, R. Cheekoori, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 24, 807 (2013)

    Google Scholar 

  163. W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 24, 1624 (2013)

    Google Scholar 

  164. W.A. Hadi, P.K. Guram, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 113, 113709 (2013)

    Google Scholar 

  165. J.G. Ruch, IEEE Trans. Electron Devices 19, 652 (1972)

    Google Scholar 

  166. M.S. Shur, L.F. Eastman, IEEE Trans. Electron Devices 26, 1677 (1979)

    Google Scholar 

  167. M. Heiblum, M.I. Nathan, D.C. Thomas, C.M. Knoedler, Phys. Rev. Lett. 55, 2200 (1985)

    Google Scholar 

  168. A. Palevski, M. Heiblum, C.P. Umbach, C.M. Knoedler, A.N. Broers, R.H. Koch, Phys. Rev. Lett. 62, 1776 (1989)

    Google Scholar 

  169. A. Palevski, C.P. Umbach, M. Heiblum, Appl. Phys. Lett. 55, 1421 (1989)

    Google Scholar 

  170. A. Yacoby, U. Sivan, C.P. Umbach, J.M. Hong, Phys. Rev. Lett. 66, 1938 (1991)

    Google Scholar 

  171. G.S. Parks, C.E. Hablutzel, L.E. Webster, J. Am. Chem. Soc. 49, 2792 (1927)

    Google Scholar 

  172. E. Tiede, M. Thimann, K. Sensse, Chem. Berichte 61, 1568 (1928)

    Google Scholar 

  173. W.C. Johnson, J.B. Parsons, M.C. Crew, J. Phys. Chem. 36, 2651 (1932)

    Google Scholar 

  174. G.I. Finch, H. Wilman, J. Chem. Soc. 751 (1934).

  175. V.E. Cosslett, Nature 136, 988 (1935)

    Google Scholar 

  176. R. Juza, H. Hahn, Zeitschr. Anorgan. Allgem. Chem. 239, 282 (1938)

    Google Scholar 

  177. M.A. Khan, Q. Chen, C.J. Sun, M. Shur, B. Gelmont, Appl. Phys. Lett. 67, 1429 (1995)

    Google Scholar 

  178. S. Yoshida, S. Misawa, S. Gonda, J. Vac. Sci. Technol. B 1, 250 (1983)

    Google Scholar 

  179. H. Nakayama, P. Hacke, M.R.H. Khan, T. Detchprohm, K. Hiramatsu, N. Sawaki, Jpn. J. Appl. Phys. 35, L282 (1996)

    Google Scholar 

  180. C.A. Hurni, J.R. Lang, P.G. Burke, J.S. Speck, Appl. Phys. Lett. 101, 102106 (2012)

    Google Scholar 

  181. Z.C. Huang, R. Goldberg, J.C. Chen, Y. Zheng, D.B. Mott, P. Shu, Appl. Phys. Lett. 67, 2825 (1995)

    Google Scholar 

  182. S. Krishnamurthy, M. van Schilfgaarde, A. Sher, A.-B. Chen, Appl. Phys. Lett. 71, 1999 (1997)

    Google Scholar 

  183. A. Matulionis, J. Liberis, L. Ardaravičius, M. Ramonas, I. Matulionienė, J. Smart, Semicond. Sci. Technol. 17, L9 (2002)

    Google Scholar 

  184. C. Bulutay, B.K. Ridley, N.A. Zakhleniuk, Phys. Rev. B 68, 115205 (2003)

    Google Scholar 

  185. R. Brazis, R. Raguotis, Appl. Phys. Lett. 85, 609 (2004)

    Google Scholar 

  186. A.A.P. Silva, V.A. Nascimento, J. Lumin. 106, 253 (2004)

    Google Scholar 

  187. C.E. Martinez, N.M. Stanton, A.J. Kent, M.L. Williams, I. Harrison, H. Tang, J.B. Webb, J.A. Bardwell, Semicond. Sci. Technol. 21, 1580 (2006)

    Google Scholar 

  188. M. Tas, B. Tanatar, Phys. Status Solidi C 4, 372 (2007)

    Google Scholar 

  189. A. Matulionis, J. Liberis, E. S̆ermuks̆nis, J. Xie, J.H. Leach, M. Wu, H. Morkoç, Semicond. Sci. Technol. 23, 075048 (2008)

    Google Scholar 

  190. A. Matulionis, J. Liberis, IEE Proc. Circ. Dev. Syst 151, 148 (2004)

    Google Scholar 

  191. M. Ramonas, A. Matulionis, J. Liberis, L. Eastman, X. Chen, Y.-J. Sun, Phys. Rev. B 71, 075324 (2005)

    Google Scholar 

  192. J.M. Barker, D.K. Ferry, S.M. Goodnick, D.D. Koleske, A. Allerman, R.J. Shul, Phys. Status Solidi C 2, 2564 (2005)

    Google Scholar 

  193. L. Ardaravičius, M. Ramonas, O. Kiprijanovic, J. Liberis, A. Matulionis, L.F. Eastman, J.R. Shealy, X. Chen, Y.J. Sun, Phys. Status Solidi A 202, 808 (2005)

    Google Scholar 

  194. Y. Chang, K.Y. Tong, C. Surya, Semicond. Sci. Technol. 20, 188 (2005)

    Google Scholar 

  195. S. Yamakawa, S.M. Goodnick, J. Branlard, M. Saraniti, Phys. Status Solidi C 2, 2573 (2005)

    Google Scholar 

  196. A. Reklaitis, L. Reggiani, J. Appl. Phys. 97, 043709 (2005)

    Google Scholar 

  197. L.F. Eastman, V. Tilak, J. Smart, B.M. Green, E.M. Chumbes, R. Dimitrov, H. Kim, O.S. Ambacher, N. Weimann, T. Prunty, M. Murphy, W.J. Schaff, J.R. Shealy, IEEE Trans. Electron Devices 48, 479 (2001)

    Google Scholar 

  198. C.H. Oxley, M.J. Uren, IEEE Trans. Electron Devices 52, 165 (2005)

    Google Scholar 

  199. A. Ilgaz, S. Gökden, R. Tülek, A. Teke, S. Özçelik, E. Özbay, Eur. Phys. J. Appl. Phys. 55, 30102 (2011)

    Google Scholar 

  200. D.R. Naylor, A. Dyson, B.K. Ridley, Solid State Commun. 152, 549 (2012)

    Google Scholar 

  201. D.R. Naylor, A. Dyson, B.K. Ridley, J. Appl. Phys. 111, 053703 (2012)

    Google Scholar 

  202. E. Bellotti, F. Bertazzi, S. Shishehchi, M. Matsubara, M. Goano, IEEE Trans. Electron Devices 60, 3204 (2013)

    Google Scholar 

  203. S. Dasgupta, J. Lu, Nidhi, A. Raman, C. Hurni, G. Gupta, J.S. Speck, U.K. Mishra, Appl. Phys. Express 6, 034002 (2013)

  204. J.-Z. Zhang, A. Dyson, B.K. Ridley, Appl. Phys. Lett. 102, 062104 (2013)

    Google Scholar 

  205. W.A. Hadi, M. Shur, L.F. Eastman, S.K. O’Leary, Mater. Res. Soc. Symp. Proc. 1327 (2011) doi:10.1557/opl.2011.851

  206. W.A. Hadi, M.S. Shur, S.K. O’Leary, Mater. Res. Soc. Symp. Proc. 1577 (2013). doi:10.1557/opl.2013.535

  207. W.A. Hadi, M.S. Shur, S.K. O’Leary, Mater. Res. Soc. Symp. Proc. 1577 (2013). doi:10.1557/opl.2013.534

  208. W.A. Hadi, E. Baghani, M.S. Shur, S.K. O’Leary, Mater. Res. Soc. Symp. Proc. 1577 (2013). doi:10.1557/opl.2013.649

  209. W. A. Hadi, E. Baghani, M.S. Shur, S.K. O’Leary, Mater. Res. Soc. Symp. Proc. 1674 (2014). doi:10.1557/opl.2014.479

Download references

Acknowledgments

Financial support from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged. The work performed at Rensselaer Polytechnic Institute was supported by the Army Research Laboratory under the auspices of the ARL MSME Alliance program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen K. O’Leary.

Additional information

This paper is dedicated to the memory of our friend, mentor, and co-author, Professor Lester F. Eastman, of Cornell University, who passed away in 2013.

Note to Reader Some of the results presented herein, and portions of the text, are borrowed from our previous review article; see O’Leary et al. [62]. This overlap in results and text is meant to make this particular review article as self-contained and complete as possible.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadi, W.A., Shur, M.S. & O’Leary, S.K. Steady-state and transient electron transport within the wide energy gap compound semiconductors gallium nitride and zinc oxide: an updated and critical review. J Mater Sci: Mater Electron 25, 4675–4713 (2014). https://doi.org/10.1007/s10854-014-2226-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2226-2

Keywords

Navigation