Skip to main content
Log in

Synthesis of phase pure iron oxide polymorphs thin films and their enhanced magnetic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The α-Fe2O3 thin film was prepared on liquid–vapor interface at room temperature by a facile and cost effective method, which was converted to Fe3O4 and γ-Fe2O3 films by reduction and oxidation process. The morphological and structural characterizations reveal the average crystallites size in α-Fe2O3, Fe3O4 and γ-Fe2O3 films 12.8, 9.2 and 19 nm with rms roughness 4.35, 4.60 and 8.21 nm, respectively. From magnetic measurements, the α-Fe2O3 thin film shows a room temperature super-paramagnetic behavior with saturation magnetization 18 emu/cm3, while Fe3O4 and γ-Fe2O3 thin films exhibit ferrimagnetic behavior with saturation magnetization values 414.5 and 148 emu/cm3, respectively. A significantly higher value of saturation magnetization is observed in α-Fe2O3 film, which is trusted due to the uncompensated surface spins in the film. The converted Fe3O4 film also shows enhanced saturation magnetization due to the reduction in antiphase boundaries, whereas the magnetization in γ-Fe2O3 film decreases comparatively. The magnetic property of the γ-Fe2O3 is explained on the basis of the Fe3+ ions vacancy at the octahedral position in its structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X. He, Y. Zhu, J. Nanosci. Nanotechnol. 12, 7121 (2012)

    Article  Google Scholar 

  2. K. Song, Q. Wang, Q. Liu, H. Zhang, Y. Cheng, Sensors 11, 485 (2011)

    Article  Google Scholar 

  3. H.S. Ryu, J.S. Kim, Z. Guo, H. Liu, K.W. Kim, J.H. Ahn, H.J. Ahn, Phys. Scr. T139, 014066 (2010)

  4. J.M. Pastor, J.I. Pérez-Landazábal, C. Gómez-Polo, V. Recarte, S. Larumbe, R. Santamarta, M. Fernandes Silva, E.A. Gómez Pineda, A.A. Winkler Hechenleitner, M.K. Lima, Appl. Phys. Lett. 100, 063102 (2012)

    Article  Google Scholar 

  5. R.G. Delatorre, R.C. da Silva, J.S. Cruz, N. Garcia, A.A. Pasa, J. Solid State Electrochem. 13, 843 (2009)

    Article  Google Scholar 

  6. R.N. Goyal, D. Kaur, A.K. Pandey, Mater. Chem. Phys. 116, 638 (2009)

    Article  Google Scholar 

  7. R. Mantovan, A. Lamperti, M. Georgieva, G. Tallarida, M. Fanciulli, J. Phys. D Appl. Phys. 43, 065002 (2010)

    Article  Google Scholar 

  8. S. Shen, C.X. Kronawitter, J. Jiang, S.S. Mao, L. Guo, Nano Res. 5, 327 (2012)

    Article  Google Scholar 

  9. N. Takahashi, N. Kakuda, A. Ueno, K. Yamaguchi, T. Fujii, Jpn. J. Appl. Phys. 28, L244 (1989)

    Article  Google Scholar 

  10. S. Park, S. Lim, H. Choi, Chem. Mater. 18, 5150 (2006)

    Article  Google Scholar 

  11. M.F. Al-Kuhaili, M. Saleem, S.M.A. Durrani, J. Alloys Compd. 521, 178 (2012)

    Article  Google Scholar 

  12. A.P. Caricato, Y.V. Kudryavtsev, G. Leggieri, A. Luches, S.A. Mulenko, J. Phys. D Appl. Phys. 40, 4866 (2007)

    Article  Google Scholar 

  13. B.M. Klahr, A.B.F. Martinson, T.W. Hamann, Langmuir 7, 461 (2011)

    Article  Google Scholar 

  14. H. Yanagihara, M. Myoka, D. Isaka, T. Niizeki, K. Mibu, E. Kita, J. Phys. D Appl. Phys. 46, 175004 (2013)

    Article  Google Scholar 

  15. J.-Y. Lee, B.-C. Kang, D.-Y. Jung, J.-H. Boo, J. Vac. Sci. Technol., B 25, 1516 (2007)

    Article  Google Scholar 

  16. G. Wang, Y. Ling, D.A. Wheeler, K.E.N. George, K. Horsley, C. Heske, J.Z. Zhang, Y. Li, Nano Lett. 11, 3503 (2011)

    Article  Google Scholar 

  17. H.G. Cha, J. Song, H.S. Kim, W. Shin, K.B. Yoon, Y.S. Kang, Chem. Commun. 47, 2441 (2011)

    Article  Google Scholar 

  18. K. Basavaiah, A.V. Prasada Rao, Chem. Sci. Trans. 1, 1382 (2012)

    Article  Google Scholar 

  19. H. Qiu, L. Pan, L. Li, H. Zhu, X. Zhao, M. Xu, L. Qin, J.Q. Xiao, J. Appl. Phys. 102, 113913 (2007)

    Article  Google Scholar 

  20. F. Jiao, J.-C. Jumas, M. Womes, A.V. Chadwick, A. Harrison, P.G. Bruce, J. Am. Chem. Soc. 128, 12905 (2006)

    Article  Google Scholar 

  21. W. Wu, X. Xiao, S. Zhang, J. Zhou, L. Fan, F. Ren, C. Jiang, J. Phys. Chem. C 114, 16092 (2010)

    Article  Google Scholar 

  22. J.K. Lin, J.M. Sivertsen, J.H. Judy, J. Appl. Phys. 57, 4000 (1985)

    Article  Google Scholar 

  23. P. Kumar, R.K. Singh, N. Rawat, P.B. Barman, S.C. Katyal, H. Jang, H.-N. Lee, R. Kumar, J. Nanopart. Res. 15, 1532 (2013)

    Article  Google Scholar 

  24. M. Fang, V. Ström, R.T. Olsson, L. Belova, K.V. Rao, Nanotechnology 23, 145601 (2012)

    Article  Google Scholar 

  25. J.T. Wang, X.L. Shi, W.W. Liu, X.H. Zhong, J.N. Wang, L. Pyrah, K.D. Sanderson, P.M. Ramsey, M. Hirata, K. Tsuri, Sci. Rep. 4, 3679 (2014)

    Google Scholar 

  26. O. Lyandres, D. Finkelstein-Shapiro, P. Chakthranont, M. Graham, K.A. Gray, Chem. Mater. 24, 3355 (2012)

    Article  Google Scholar 

  27. S. Prabahar, M. Dhanam, J. Cryst. Growth 285, 41 (2005)

    Article  Google Scholar 

  28. I. Chamritski, G. Burns, J. Phys. Chem. B 109, 4965 (2005)

    Article  Google Scholar 

  29. D. Bersani, P.P. Lottici, A. Montenero, J. Raman Spectrosc. 30, 355 (1999)

    Article  Google Scholar 

  30. A.M. Jubb, H.C. Allen, ACS Appl. Mater. Interfaces 2, 2804 (2010)

    Article  Google Scholar 

  31. M. Lübbe, A.M. Gigler, R.W. Stark, W. Moritz, Surf. Sci. 604, 679 (2010)

    Article  Google Scholar 

  32. S. Sen, J. Jiang, P. Guo, L. Guo, Int. J. Photoenergy 174982, 1 (2013)

    Google Scholar 

  33. K.W. Chung, K.B. Kim, S.H. Han, H. Lee, J. Electrochem. Soc. 152, C560 (2005)

    Article  Google Scholar 

  34. L. Slavov, M.V. Abrashev, T. Merodiiska, Ch. Geleva, R.E. Vandenberghe, I. Markova-Deneva, I. Nedkov, J. Magn. Magn. Mater. 322, 1904 (2010)

    Article  Google Scholar 

  35. D.L.A. de Faria, S.V. Silva, M.T. de Oliveira, J. Raman Spectrosc. 28, 873 (1997)

    Article  Google Scholar 

  36. M.A. Legodi, D. de Waal, Dyes Pigm. 74, 161 (2007)

    Article  Google Scholar 

  37. F. Bødker, M.F. Hansen, C.B. Koch, K. Lefmann, S. Mørup, Phys. Rev. B 61, 6826 (2000)

    Article  Google Scholar 

  38. R.N. Bhowmik, R. Ranganathan, S. Sarkar, C. Bansal, Mater. Sci. Eng., A 304–306, 1014 (2001)

    Article  Google Scholar 

  39. R.N. Bhowmik, R. Nagarajan, R. Ranganathan, Phys. Rev. B 69, 054430 (2004)

    Article  Google Scholar 

  40. L. Neel, in Low Temperature Physics, ed. by C. Dewitt, B. Drefus, P.D. de Gennes (Gordon and Beach, New York, 1962), p. 413

    Google Scholar 

  41. L. Lu, L. Li, X. Wang, G. Li, J. Phys. Chem. B 109, 17151 (2005)

    Article  Google Scholar 

  42. A.E. Eken, M. Ozenbas, J. Sol–Gel Sci. Technol. 50, 321 (2009)

    Article  Google Scholar 

  43. Y. Peng, C. Park, D.E. Laughlin, J. Appl. Phys. 93, 7957 (2003)

    Article  Google Scholar 

  44. S.K. Arora, H.-C. Wu, H. Yao, W.Y. Ching, R.J. Choudhary, I.V. Shvets, O.N. Mryasov, IEEE Trans. Magn. 44, 2628 (2008)

    Article  Google Scholar 

  45. W.L. Zhou, K.-Y. Wang, C.J. O’Connor, J. Tang, J. Appl. Phys. 89, 7398 (2001)

    Article  Google Scholar 

  46. O. Ishii, F. Yoshimura, S. Ohara, IEEE Trans. Magn. MAG-23, 1985 (1987)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Research Grant of Nanotechnology Lab, Jaypee University of Information Technology, Waknaghat, Solan (India) also by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (Do-Yak Research Program, No. 2013-035295), Gwangju Institute of Science and Technology, Gwangju, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., No-Lee, H. & Kumar, R. Synthesis of phase pure iron oxide polymorphs thin films and their enhanced magnetic properties. J Mater Sci: Mater Electron 25, 4553–4561 (2014). https://doi.org/10.1007/s10854-014-2203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2203-9

Keywords

Navigation