Skip to main content
Log in

Microstructures and electrical properties of Sr0.6Bi0.4Fe0.6Sn0.4O3–BaCoII 0.02CoIII 0.04Bi0.94O3 thick-film thermistors with low room-temperature resistivity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The thick film NTC thermistor of compositions Sr0.6Bi0.4Fe0.6Sn0.4O3 + BaCoII 0.02CoIII 0.04Bi0.94O3, synthesized by solid state reaction, were prepared by screen-printing on alumina substrate. The microstructures, composition dependent, impedance characteristics, self-heating behaviours and thermistor properties were investigated. The relation between logarithm of resistivity and reciprocal of absolute temperature for the thick film thermistor was almost linear for all the compositions studied. The room-temperature resistivity, thermistor constant and activation energy of the films decreased with increasing BaCoII 0.02CoIII 0.04Bi0.94O3 content and were in the range of 18.2–945.7 Ω cm, 1,753–2,649 K and 0.151–0.228 eV, respectively. The thick films showed the nearest-neighbor hopping or variable-range hopping model depended on the compositions. Impedance analysis indicated that the resistivity value of the thick films was mainly ascribed to the contribution of grains. At higher BaCoII 0.02CoIII 0.04Bi0.94O3 content, a good self-heating effect of one thermistor film was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Vakiv, O. Shpotyuk, O. Mrooz, I. Hadzaman, Controlled thermistor effect in the system CuxNi1−x−yCo2yMn2−yO4. J. Eur. Ceram. Soc. 21, 1783–1785 (2001)

    Article  Google Scholar 

  2. S. Jagtap, S. Rane, S. Gosavi, D. Amalnerkar, ‘Lead Free’ thick film thermistors: a study of variation in glass frit concentration and organics composition. J. Mater. Sci.: Mater. Electron. 21, 861–867 (2010)

    Google Scholar 

  3. M. Parlak, T. Hashemi, M.J. Hogan, A.W. Brinkman, Electron beam evaporation of nickel manganite thin-film negative temperature coefficient thermistors. J. Mater. Sci. Lett. 17, 1995–1997 (1998)

    Article  Google Scholar 

  4. C.L. Yuan, X.Y. Liu, M.F. Liang, C.R. Zhou, H. Wang, Electrical properties of Sr–Bi–Mn–Fe–O thick-film NTC thermistors prepared by screen printing. Sens. Actuators A 167, 291–296 (2011)

    Article  Google Scholar 

  5. C.H. Zhao, B.Y. Wang, P.H. Yang, L. Winnubst, C.S. Chen, Effects of Cu and Zn co-doping on the electrical properties of Ni0.5Mn2.5O4 NTC ceramics. J. Eur. Ceram. Soc. 28, 35–40 (2008)

    Article  Google Scholar 

  6. K. Park, J.K. Lee, Mn–Ni–Co–Cu–Zn–O NTC thermistors with high thermal stability for low resistance applications. Scr. Mater. 57, 329–332 (2007)

    Article  Google Scholar 

  7. S.A. Kanade, V. Puri, Composition dependent resistivity of thick film Ni(1−x)CoxMn2O4: (0 ≤ x ≤ 1) NTC thermistors. Mater. Lett. 60, 1428–1431 (2006)

    Article  Google Scholar 

  8. S.A. Kanade, V. Puri, Electrical properties of thick-film NTC thermistor composed of Ni0.8Co0.2Mn2O4 ceramic: effect of inorganic oxide binder. Mater. Res. Bull. 43, 819–824 (2008)

    Article  Google Scholar 

  9. R. Schmidt, A. Basu, A.W. Brinkman, Production of NTCR thermistor devices based on NiMn2O4+σ. J. Eur. Ceram. Soc. 24, 1233–1236 (2004)

    Article  Google Scholar 

  10. S. Jagtap, S. Rane, R. Aiyer, S. Gosavi, D. Amalnerkar, Study of microstructure, impedance and dc electrical properties of RuO2–spinel based screen printed ‘green’ NTC thermistor. Curr. Appl. Phys. 10, 1156–1163 (2010)

    Article  Google Scholar 

  11. J.-E. Kang, J. Ryu, G.F. Han, J.-J. Choi, W.-H. Yoon, B.-D. Hahn, J.-W. Kim, C.-W. Ahn, J.H. Choi, D.-S. Park, LaNiO3 conducting particle dispersed NiMn2O4 nanocomposite NTC thermistor thick films by aerosol deposition. J. Alloys Compd. 534, 70–73 (2012)

    Article  Google Scholar 

  12. C.L. Yuan, X.Y. Liu, C.R. Zhou, J.W. Xu, B. Li, Electrical properties of lead-free thick film NTC thermistors based on perovskite-type BaCoII xCoIII 2xBi1 − 3xO3. Mater. Lett. 65, 836–839 (2011)

    Article  Google Scholar 

  13. J.-J. Choi, J. Ryu, B.-D. Hahn, W.-H. Yoon, B.-K. Lee, J.-H. Choi, D.-S. Park, Ni-containing conducting ceramic as an oxidation protective coating on metallic interconnects by aerosol deposition. J. Am. Ceram. Soc. 93, 1614–1618 (2010)

    Google Scholar 

  14. G.F. Han, J. Ryu, W.-H. Yoon, J.-J. Choi, B.-D. Hahn, J.-W. Kim, D.-S. Park, Effect of electrode and substrate on the fatigue behavior of PZT thick films fabricated by aerosol deposition. Ceram. Int. 38, S241–S244 (2012)

    Article  Google Scholar 

  15. K. Park, D.Y. Bang, Electrical properties of Ni–Mn–Co–(Fe) oxide thick-film NTC thermistors prepared by screen printing. J. Mater. Sci.: Mater. Electron. 14, 81–87 (2003)

    Google Scholar 

  16. E.D. Macklen, Thermistor (Electrochemical Publications Ltd., Ayr, Scotland, 1979), p. 33

    Google Scholar 

  17. R. Schmidt, A. Basu, A.W. Brinkman, Small polaron hopping in spinel manganates. Phys. Rev. B 72, 115101 (2005)

    Article  Google Scholar 

  18. F. El-Tantawy, New double negative and positive temperature coefficients of conductive EPDM rubber TiC ceramic composites. Eur. Polym. J. 38, 567–577 (2002)

    Article  Google Scholar 

  19. R. Schmidt, A. Basu, A.W. Brinkman, Z. Klusek, P.K. Datta, Electron-hopping modes in NiMn2O4+δ materials. Appl. Phys. Lett. 86, 073501 (2005)

    Article  Google Scholar 

  20. R. Schmidt, A.W. Brinkman, Studies of the temperature and frequency dependent impedance of an electroceramic functional oxide NTC thermistor. Adv. Funct. Mater. 17, 3170–3174 (2007)

    Article  Google Scholar 

  21. B.I. Shklovskii, A.L. Efros, in Electronic Properties of Doped Semiconductors, Solid State Sciences 45, ed. by M. Cardona, P. Fulde, H.J. Queisser (Springer, Berlin, 1984)

    Chapter  Google Scholar 

  22. A.U. Keskin, A simple analog behavioural model for NTC thermistors including selfheating effect. Sens. Actuators A 118, 244–247 (2005)

    Article  Google Scholar 

  23. S. Jagtap, S. Rane, S. Gosavi, D. Amalnerkar, Study on I–V characteristics of lead free NTC thick film thermistor for selfheating application. Microelectron. Eng. 88, 82–86 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

Financial supports of the National Natural Science Foundation of China (Grants No. 51102055) and the Natural Science Foundation of Guangxi (Grants No. 2011GXNSFA018028) are acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlai Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Yang, T., Luo, Y. et al. Microstructures and electrical properties of Sr0.6Bi0.4Fe0.6Sn0.4O3–BaCoII 0.02CoIII 0.04Bi0.94O3 thick-film thermistors with low room-temperature resistivity. J Mater Sci: Mater Electron 25, 3967–3976 (2014). https://doi.org/10.1007/s10854-014-2115-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2115-8

Keywords

Navigation