Skip to main content
Log in

AlN epilayers and nanostructures growth in a homebuilt alumina hot-wall high temperature chemical vapor deposition system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

AlN epilayers and nanostructures were grown in the range from 500 to 1500 °C in a homebuilt alumina hot-wall high temperature chemical vapor deposition system. The results revealed that high quality AlN epilayers can be grown at high temperature beyond 1100 °C and versatile AlN nanostrctures can be grown at low temperature below 900 °C, enabling the system to tailor AlN structures just by changing the growth temperature. High growth temperature as well as low N/Al ratio was preferable to surface mobility of the adatoms and lateral growth, resulting in a series of morphology changes. Meanwhile, the crystal quality improved with the increasing growth temperature, as proved by the decreasing FWHM of (0002) plane rocking curve of the epilayer and narrowing peaks in θ-2θ XRD pattern of the nanostructures. The epitaixal relationship was proven to be AlN (0001) ‖ sapphire (0001) and AlN [1-210] ‖ sapphire [1-100]. The layer was in tensile stress state in several tens of nanometers range near the interface and turned into compressive stress state out of the range. Tens of atoms layers of sapphire interface were substituted for AlN lattice due to nitridation. Low growth temperature produced versatile AlN nanostructures, whose crystal structures varied from amorphous in 500 °C case to defective crystal in 700 °C case and improved crystallinity in 900 °C case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Morkoc, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, M. Burns, J Appl Phys 76, 1363 (1994)

    Article  Google Scholar 

  2. O. Ambacher, J Phys D Appl Phys 31, 2653 (1998)

    Article  Google Scholar 

  3. S. Pietranico, S. Pommier, S. Lefebvre, Z. Khatir, S. Bontemps, Microelectron Reliab 49, 1260 (2009)

    Article  Google Scholar 

  4. R.T. Bondokov, S.G. Mueller, K.E. Morgan, G.A. Slack, S. Schujman, M.C. Wood, J.A. Smart, L.J. Schowalter, J Cryst Growth 310, 4020 (2008)

    Article  Google Scholar 

  5. M.A. Moreira, I. Doi, J.F. Souza, J.A. Diniz, Microelectron Eng 82, 802 (2011)

    Article  Google Scholar 

  6. Epelbaum BM, Bickermann M, Winnacker A (2004) Second international symposium on acoustic wave devices for futrue mobile communication systems, 157

  7. V. Cimalla, J. Pezoldt, O. Ambacher, J Phys D Appl Phys 40, 6386 (2007)

    Article  Google Scholar 

  8. D. Dharanipal, R. Mlcak, J. Chan, H.L. Tuller, J. Abell, W. Li, T.D. Moustaka, Proc Electrochem Soc PV 6, 287 (2004)

    Google Scholar 

  9. Y. Taniyasu, M. Kasu, T. Makimoto, Nature 441, 325 (2006)

    Article  Google Scholar 

  10. S. Nikishin, B. Borisov, V. Kuryatkov, M. Holtz, A. Gregory, Wendy L. Sarney, Anand V. Sampath, H. Shen, M. Wraback, A. Usikov, V. Dmitriev, J Mater Sci Mater Electron 19, 764 (2008)

    Article  Google Scholar 

  11. H. He, L. Huang, M. Xiao, F. Yuechun, X. Shen, J. Zeng, J Mater Sci Mater Electron 24, 4499 (2013)

    Article  Google Scholar 

  12. A. Kakanakova-Georgieva, R.R. Ciechonski, U. Fosberg, A. Lundskog, E. Janzén, Cryst Growth Des 9, 880 (2009)

    Article  Google Scholar 

  13. M. Bickermann, B.M. Epelbaum, O. Filip, P. Heimann, M. Feneberg, S. Nagata, A. Winnacker, Phys Status Solidi C 7, 1743 (2010)

    Article  Google Scholar 

  14. V.N. Jmerik, A.M. Mizerov, D.V. Nechaev, P.A. Aseev, A.A. Sitnikova, S.I. Troshkov, P.S. Kop’ev, S.V. Ivanov, J Cryst Growth 354, 188 (2012)

    Article  Google Scholar 

  15. H. Okumura, T. Kimoto, J. Suda, Appl Phys Exp 5, 1055021 (2012)

    Article  Google Scholar 

  16. A. Kakanakova-Georgieva, D. Nilsson, E. Janzén, J Cryst Growth 338, 52 (2012)

    Article  Google Scholar 

  17. X. Chen, S. Li, J. Kang, J Mater Sci Mater Electron 19, S215 (2008)

    Article  Google Scholar 

  18. http://www.hexatechinc.com/

  19. L.J. Schowalter, S.B. Schujman, W. Liu, M. Goorsky, M.C. Wood, J. Grandusky, F. Shahedipour-Sandvik, Phys Status Solidi a 203, 1667 (2006)

    Article  Google Scholar 

  20. M. Bichermann, O. Filip, B.M. Epelbaum, P. Heimann, M. Feneberg, B. Neuschl, K. Thonke, E. Wedler, A. Winnacker, J Cryst Growth 339, 13 (2012)

    Article  Google Scholar 

  21. H. Matsubara, K. Mizuno, Y. Takeuchi, S. Harada, Y. Kitou, E. Okuno, T. Ujihara, Jpn J Appl Phys 52, 08JE17 (2013)

    Article  Google Scholar 

  22. M. Yonenura, K. Kamei, S. Munetoh, J Mater Sci Mater Electron 16, 197 (2005)

    Article  Google Scholar 

  23. A. Volkova, V. Ivantsov, L. Leung, J Cryst Growth 314, 113 (2011)

    Article  Google Scholar 

  24. Y. Katagiri, S. Kishino, K. Okuura, H. Miyake, K. Hiramatu, J Cryst Growth 311, 2831 (2009)

    Article  Google Scholar 

  25. Y. Kumagai, T. Yamane, A. Koukitu, J Cryst Growth 28, 162 (2005)

    Google Scholar 

  26. T. Nagashima, M. Harada, H. Yanagi, Y. Kumagai, J Cryst Growth 300, 42 (2007)

    Article  Google Scholar 

  27. Derrick Shane Kamber (2008) Hydride Vapor Phase Epitaxy of Aluminum Nitride, Dissertation, University of California Santa Barbara

  28. K.-i. Eriguchi, H. Murakami, U. Panyukova, Y. Kumagai, S. Ohira, A. Koukitu, J Cryst Growth 298, 332 (2007)

    Article  Google Scholar 

  29. K.-i. Eriguchi, T. Hiratsuka, H. Murakami, Y. Kumagai, A. Koutitu, J Cryst Growth 310, 4016 (2008)

    Article  Google Scholar 

  30. D.F. Bliss, V.L. Tassev, D. Weyburne, J.S. Bailey, J Cryst Growth 250, 1 (2003)

    Article  Google Scholar 

  31. J. Tajima, H. Murakami, Y. Kumagai, K. Takada, A. Koukitu, J Cryst Growth 311, 837 (2009)

    Article  Google Scholar 

  32. W. Jie-Jun, Y. Katagiri, K. Okuura, D.-B. Li, H. Miyake, K. Hiramatsu, J Cryst Growth 311, 3801 (2009)

    Article  Google Scholar 

  33. A. Dollet, Y. Casaux, G. Chaix, C. Dupuy, Thin Solid Films 406, 1 (2002)

    Article  Google Scholar 

  34. J. Yang, T.-W. Liu, C.-W. Hsu, L.-C. Chen, K.-H. Chen, C.-C. Chen, Nanotechnology 17, S321 (2006)

    Article  Google Scholar 

  35. F. Zhang, Q. Wu, X. Wang, N. Liu, J. Yang, Vacuum 86, 833 (2012)

    Article  Google Scholar 

  36. Y. Gao, H. Mingzhe, C. Xiangcheng, Y. Qingfeng, J Mater Sci Mater Electron 24, 4008 (2013)

    Article  Google Scholar 

  37. X. Song, Z. Guo, J. Zheng, L. Xingguo, Y. Pu, Nanotechnology 19, 1156091 (2008)

    Google Scholar 

  38. Y. Kumagai, Y. Enatsu, M. Ishizuki, Y. Kubota, J. Tajima, T. Nagashima, H. Murakami, K. Takada, A. Koukitu, J Cryst Growth 312, 2530 (2010)

    Article  Google Scholar 

  39. T.D. Moustakas, S.E. Mohney, S.J. Pearton, Proceedings of the third symposium on III–V nitride materials and processes. Electrochemical Soc 98, 130 (1999)

    Google Scholar 

  40. H. Komiyama, Y. Shimogaki, Y. Egashira, Chem Eng Sci 54, 1941 (1999)

    Article  Google Scholar 

  41. F. Dwikusuma, T.F. Kuech, J Appl Phys 94, 5656 (2003)

    Article  Google Scholar 

  42. Sarad Bahadur Thapa (2010) Studies of AlN grown by MOVPE for electronic and optoelectronic applications. Dissertation, Ulm University

  43. R.D. Vispute, H. Wu, J. Narayan, Appl Phys Lett 67, 1549 (1995)

    Article  Google Scholar 

  44. M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano, I. Akasaki, Jpn J Appl Phys 37, 316 (1998)

    Article  Google Scholar 

  45. D.G. Zhao, J.J. Zhu, Z.S. Liu, S.M. Zhang, H. Yang, D.S. Jiang, Appl Phys Lett 85, 1449 (2004)

    Google Scholar 

  46. R.A. Schwarzer, Texture Microstruct 20, 7 (1993)

    Article  Google Scholar 

  47. David B, Williams C, Barry Carter (2009) Transmission electron microscopy, A textbook for materials science (2009, Springer Science + Business Media, New York), p. 290

Download references

Acknowledgments

The authors are thankful to Doc. Jing-Yi Chen who is a senior application specialist of Application Lab of PANalytical in Shanghai, China. His knowledgeable advices about characterization and skillful measurements via the HR-XRD system of Panalytical Empyrean really helped us understand the AlN layer structure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fa-Min Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Liu, FM., Yao, Y. et al. AlN epilayers and nanostructures growth in a homebuilt alumina hot-wall high temperature chemical vapor deposition system. J Mater Sci: Mater Electron 25, 2210–2219 (2014). https://doi.org/10.1007/s10854-014-1861-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1861-y

Keywords

Navigation