Skip to main content
Log in

Effect of rapid thermal annealing on Zn/ZnO layers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zn/ZnO layers were deposited on SiO2/Si substrate by magnetron sputtering at room temperature, and then these layers were annealed at various temperatures from 200 to 400 °C in nitrogen atmosphere for 1 min. The structural and electrical properties of the Zn/ZnO layers before and after annealing are systematically investigated by X-ray diffraction, scanning electron microscopy, current–voltage measurement system, and Auger electron spectroscopy. Current–voltage measurements show that the Zn/ZnO layers exhibit an Ohmic contact behavior. It is shown that, initially, the specific contact resistivity decreases with the increase of the annealing temperature and reaches a minimum value of 9.76 × 10−5 Ω cm2 at an annealing temperature of 300 °C. However, with a further increase of the annealing temperature, the Ohmic contact behavior degrades. This phenomenon can be explained by considering the diffusion of zinc interstitials and oxygen vacancies. It is also shown that Zn-rich ZnO thin films can be obtained by annealing Zn on the surface of ZnO film and that good Ohmic contact between Zn and ZnO layers can be observed when the annealing temperature was 300 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Yang, S. Chu, W.V. Chen, L. Li, J.Y. Kong, J.J. Ren, P.K.L. Yu, J.L. Liu, Appl. Phys. Express 3, 032101 (2010)

    Article  Google Scholar 

  2. H. Zhu, C.X. Shan, B.H. Li, Z.Z. Zhang, D.Z. Shen, K.L. Choy, J. Mater. Chem. 21, 2848 (2011)

    Google Scholar 

  3. C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, Nano Lett. 7, 1003 (2007)

    Article  CAS  Google Scholar 

  4. K. Sun, Y. Jing, P. Namseok, L. Chun, B. Yoshio, D. Wang, J. Am. Chem. Soc. 44, 132 (2010)

    Google Scholar 

  5. T. Prakash, Electron. Mater. Lett. 8, 231 (2012)

    Article  CAS  Google Scholar 

  6. X.T. Qiu, R. Tang, S.J. Chen, H. Zhang, W. Pang, H.Y. Yu, Electrochem. Commun. 13, 488 (2011)

    Article  CAS  Google Scholar 

  7. B. Xiang, P. Wei, X. Zhang, S.A. Dayeh, D.P.R. Aplin, C. Soci, D. Yu, D. Wang, Nano Lett. 7, 323 (2007)

    Article  CAS  Google Scholar 

  8. L.J. Brillson, Y.C. Lu, J. Appl. Phys. 109, 121301 (2011)

    Article  Google Scholar 

  9. A. Irzh, I. Genish, L. Klein, A.L. Solovyov, A. Gedanken, Langmuir 26, 5976 (2010)

    Article  CAS  Google Scholar 

  10. H. Kim, A. Sohn, D.-W. Kim, Semicond. Sci. Technol. 27, 035010 (2012)

    Article  Google Scholar 

  11. X.Y. Kong, Y. Ding, Z.L. Wang, J. Phys. Chem. B. 108, 570 (2004)

    Article  CAS  Google Scholar 

  12. Y. Liu, T. Tan, B. Wang, X.M. Song, E. Li, H. Wang, H. Yan, J. Appl. Phys. 103, 056104 (2008)

    Article  Google Scholar 

  13. W.S. Khan, C.B. Cao, G. Nabi, R.M. Yao, S.H. Bhatti, J. Alloy. Compd. 506, 666 (2010)

    Article  CAS  Google Scholar 

  14. S. Abanades, M. Chambon, Energy Fuels 24, 6667 (2010)

    Article  CAS  Google Scholar 

  15. S. Kumar, V. Gupta, K. Sreenivas, Nanotechnology 16, 1167 (2005)

    Article  CAS  Google Scholar 

  16. Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phy. 98, 041301 (2005)

    Article  Google Scholar 

  17. A.F. Kohan, G. Ceder, D. Morgan, C.G. Van de Walle, Phys. Rev. B. 61, 019 (2000)

    Article  Google Scholar 

  18. G.-H. Lee, Electron. Mater. Lett. 6, 155 (2010)

    Article  CAS  Google Scholar 

  19. E.A. Secco, W.J. Moore, J. Chem. Phys. 26, 942 (1957)

    Article  CAS  Google Scholar 

  20. F. Tuomisto, V. Ranki, K. Saarinen, Phys. Rev. Lett. 91, 205502 (2003)

    Article  CAS  Google Scholar 

  21. G.W. Tomlins, J.L. Routbort, T.O. Mason, J. Appl. Phys. 87, 117 (2000)

    Article  CAS  Google Scholar 

  22. S.-H. Kim, S.-W. Jeong, D.-K. Hwang, S.-J. Park, T.-Y. Seong, Electrochem. Solid.St. 8, G198 (2005)

    Article  CAS  Google Scholar 

  23. A.K. Mahapatra, U.M. Bhatta, T. Som, J. Phys. D Appl. Phys. 45, 415303 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Grant No. 61176049) and Natural Science Foundation of Fujian Province (Grant No. 2009J05151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengyun Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Q., La, R., Cheng, Q. et al. Effect of rapid thermal annealing on Zn/ZnO layers. J Mater Sci: Mater Electron 24, 4075–4079 (2013). https://doi.org/10.1007/s10854-013-1363-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1363-3

Keywords

Navigation