Skip to main content
Log in

Dielectric and impedance spectroscopy of barium orthovanadate ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Comment/Reply to this article was published on 20 May 2024

Abstract

Barium orthovanadate (Ba3V2O8), a derivative of perovskite family has been prepared using a mixed-oxide technique. The room temperature X-ray diffraction analysis has confirmed the formation of a single phase compound in trigonal crystal structure. The study of microstructure by scanning electron microscopy shows that the compound has well defined grains, distributed uniformly throughout the surface. The studies of dielectric parameters (εr and tan δ) of the compound as a function of temperature at three different frequencies (100, 500, 1,000 kHz) exhibit that they are almost temperature independent at low and medium temperature ranges. Detailed studies of impedance and related parameters exhibit that the electrical properties of the material are strongly dependent on temperature, and bear a good correlation with its microstructures. The bulk resistance, evaluated from complex impedance spectra, is found to be decreasing with rise in temperature. It shows that the material has negative temperature co-efficient of resistance similar to that of semiconductors. The same behaviour has also been observed in the study of I–V characteristics of the material. The complex electric modulus analysis indicates the possibility of hopping conduction mechanism in the system with non-exponential type of conductivity relaxation. The nature of variation of dc conductivity with temperature confirms the Arrhenius behavior of the material. The ac conductivity spectra show a typical signature of an ionic conducting system, and are found to obey Jonscher’s universal power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Uchino, Ferroelectric Devices (Marcel Dekker Inc., New York, 2000)

    Google Scholar 

  2. M.E. Lines, A.M. Glass, Principle and Application of Ferroelectrics and Related Materials (Clarndon Press, Oxford, 1977)

    Google Scholar 

  3. L.H. Brixner, P.L. Flournoy, J. Elect. Chem. Soc. 112, 303 (1965)

    Article  CAS  Google Scholar 

  4. A. Grzechnik, P.F. McMillan, J. Solid State Chem. 132, 156 (1997)

    Article  CAS  Google Scholar 

  5. A. Grzechnik, P.F. McMillan, Solid State Commun. 102, 569 (1997)

    Article  CAS  Google Scholar 

  6. L.D. Merkle, A. Pinto, H. Verdun, B. McIntosh, Appl. Phys. Lett. 61, 2386 (1992)

    Article  CAS  Google Scholar 

  7. B. Buijsse, J. Schmidt, I.Y. Chan, D.J. Singel, Phys. Rev. B51, 6215 (1995)

    Google Scholar 

  8. V.D. Zhuravlev, A.A. Fotiev, Zh. Neorg, Khimii 25, 2560 (1980)

    CAS  Google Scholar 

  9. P. Parhi, V. Manivanan, S. Kohli, P. McCurdy, Bull. Mater. Sci. 31(6), 885 (2008)

    Article  CAS  Google Scholar 

  10. A.M. Glass, S.C. Abrahams, A.A. Ballmann, G. Laiacono, Ferroelectrics 17, 579 (1978)

    Article  CAS  Google Scholar 

  11. A. Grzechnik, Solid State Sci. 4, 523 (2002)

    Article  CAS  Google Scholar 

  12. R. Umemura, H. Ogawa, A. Yokoi, H. Ohsato, A. Kan, J. Alloy. Compd. 424, 388 (2006)

    Article  CAS  Google Scholar 

  13. P. Khatri, B. Behera, V. Srinivas, R.N.P. Choudhary, Curr. Appl. Phys. 9(2), 515 (2009)

    Article  Google Scholar 

  14. E. Wu, POWD, an interactive powder diffraction data interpretation and indexing program, ver. 2.1, School of Physical Sciences, Flinders University South Bedford Park, SA 5042, Australia

  15. J.C. Anderson, Dielectrics. (Chapman & Hall, London)

  16. S. Sen, R.N.P. Choudhary, Mater. Chem. Phys. 87, 256 (2004)

    Article  CAS  Google Scholar 

  17. S. Brahma, R.N.P. Choudhary, A.K. Thakur, Phys. B 355, 188 (2005)

    Article  CAS  Google Scholar 

  18. J.R. Macdonald, Impedance Spectroscopy Emphasizing Solid Materials and Systems (Chapter-4) (Wiley, New York, 1987)

  19. J. Suchanicz, Mater. Sci. Eng. B 55, 114 (1998)

    Article  Google Scholar 

  20. C.K. Suman, K. Prasad, R.N.P. Choudhary, J. Mater. Sci. 41, 369 (2006)

    Article  CAS  Google Scholar 

  21. S. Chatterjee, P.K. Mahapatra, R.N.P. Choudhary, A.K. Thakur, Phys. Stat. Sol. (a) 201, 588 (2004)

    Article  CAS  Google Scholar 

  22. V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo, J. Am. Ceram. Soc. 55, 492 (1972)

    Article  CAS  Google Scholar 

  23. H. Jain, C.H. Hsieh, J. Non-Cryst. Solids 172–174, 1408 (1994)

    Article  Google Scholar 

  24. P.R. Das, B. Pati, B.C. Sutar, R.N.P. Choudhary, Adv. Mater. Lett. 3(1), 8 (2012)

    Article  CAS  Google Scholar 

  25. I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. 58, 429 (1975)

    Article  CAS  Google Scholar 

  26. A.K. Jonscher, Nature 267, 673 (1977)

    Article  CAS  Google Scholar 

  27. S. Sen, R.N.P. Choudhary, P. Pramanik, Phys. B 387, 56 (2007)

    Article  CAS  Google Scholar 

  28. R. Padhee, P.R. Das, B.N. Parida, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. (2012). doi:10.1007/s10854-012-0647-3

  29. B. Behera, P. Nayak, R.N.P. Choudhary, J. Alloys Comp. 436, 226 (2007)

    Article  CAS  Google Scholar 

  30. J.R. Macdonald, Solid State Ionics 13, 147 (1984)

    Article  CAS  Google Scholar 

  31. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    Article  CAS  Google Scholar 

  32. M.A.L. Nobre, S. Lanfredi, J. Appl. Phys. 93, 5557 (2003)

    Article  CAS  Google Scholar 

  33. B.N. Parida, P.R. Das, R. Padhee, R.N.P. Choudhary, J. Alloys Compd. 540, 267 (2012)

    Article  CAS  Google Scholar 

  34. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, J. Appl. Phy. 106, 24102 (2009)

    Article  Google Scholar 

  35. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Katiyar, J. Mater. Sci. 42, 7423 (2007)

    Article  CAS  Google Scholar 

  36. D.K. Pradhan, B. Behera, P.R. Das, J. Mater. Scie: Mater Electron. 23, 779 (2012)

    Article  CAS  Google Scholar 

  37. P. Khatri, B. Behera, V. Srinivas, R.N.P. Choudhary, Res. Lett. Mater. Sci. (2008). Article ID 746256

Download references

Acknowledgments

The authors would like to acknowledge the kind help of Dr. B. Mishra, Principal scientist, Dalmia Institute of Scientific and Industrial Research (DISIR), Rajgangpur, Odisha and IIT Kharagpur in carrying out some experimentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush R. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pati, B., Sutar, B.C., Parida, B.N. et al. Dielectric and impedance spectroscopy of barium orthovanadate ceramics. J Mater Sci: Mater Electron 24, 1608–1616 (2013). https://doi.org/10.1007/s10854-012-0983-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0983-3

Keywords

Navigation