Skip to main content
Log in

Low field ac study of PZT/PVDF nano composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Composites of nanocrystalline Pb0.96Sr0.04(Zr0.53,Ti0.47)O3 (PZT) and α-phase PVDF have been developed using solution casting technique. Characterization of the composites has been done using XRD, FEGSEM, DSC and impedance analysis. XRD and FEGSEM determined the size range of PZT as 22–40 nm. XRD shows the successful incorporation of PZT into PVDF matrix and also confirms that no new phase is developed. DSC of the nanocomposites showed decrease in crystallinity with increasing PZT content. Broadband impedance analysis has been carried out to study the effect of the addition of PZT on the low field ac electrical properties of PVDF. Room temperature dielectric permittivity measurement of the PZT-PVDF composites at 1 kHz determined using impedance analyzer gives values of permittivity 2–4 times higher as compared to neat PVDF. It is found that dielectric permittivity values at the lower frequency edge are affected by space charges while the higher frequencies show the influence of relaxation effects in the materials. It is suggested that PZT/PVDF composites are the preferred materials for high temperature and high frequency applications. However, for low frequency use at higher temperatures, these composites do not offer any specific advantage. At room temperature, the composites are again the better choice in the 1 mHz–1 MHz frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E. Venkatragavaraj, B. Satish, P.R. Vinod, M.S. Vijaya, J. Phys. D Appl. Phys. 34, 487 (2001)

    Article  CAS  Google Scholar 

  2. L.M. Zhang, Q. Shen, D. You, Key Eng. Mater. 249, 129 (2003)

    Article  CAS  Google Scholar 

  3. R. Senthilkumar, K. Sridevi, J. Venkatesan, V. Annamalai, M.S. Vijaya, Ferroelectrics 325, 121 (2005)

    Article  CAS  Google Scholar 

  4. A. Seema, K.R. Dayas, J.M. Varghese, J. Appl. Polym. Sci. 106, 146 (2007)

    Article  CAS  Google Scholar 

  5. D.Q. Zhang, D.W. Wang, J. Yuan, Q.L. Zhao, Z.Y. Wang, M.S. Cao, Chin. Phys. Lett. 25, 4410 (2008)

    Article  CAS  Google Scholar 

  6. M. Wegener, K. Arlt, J. Phys. D Appl. Phys. 41, 1654 (2008)

    Article  Google Scholar 

  7. T. Greeshma, R. Balaji, M.M. Nayak, S. Jayakumar, Ferroelectrics 393, 88 (2009)

    Article  CAS  Google Scholar 

  8. W. Nhuapeng, J. Tontrakoon, T. Tunkasiri, CMU. J. 1, 61 (2002)

    Google Scholar 

  9. R.E. Newnham, D.P. Skinner, L.E. Cross, Mat. Res. Bull. 13, 525 (1978)

    Article  CAS  Google Scholar 

  10. B. Wei, Y. Daben, Ferroelectrics 157, 427 (1994)

    Article  Google Scholar 

  11. D. Sinha, P.K.C. Pillai, J. Appl. Phys. 64, 2571 (1988)

    Article  CAS  Google Scholar 

  12. D. Sinha, N. Shroff, P.K.C. Pillai, Ferroelectrics 103, 49 (1990)

    Article  CAS  Google Scholar 

  13. P. Thongsanitgarn, A. Watcharapasron, S. Jiansirisomboon, Surf. Rev. Lett. 17, 1 (2010)

    Article  CAS  Google Scholar 

  14. A. Tripathi, A. K. Tripathi, P.K.C. Pillai, in Proceedings of 7th International Symposium on Electrets ISE 7, 7, 501 (1991)

  15. B. Hilczer, J. Kulek, E. Markiewiez, M. Kosec, B. Malic, J. Non-Cryst. Solids 305, 167 (2002)

    Article  CAS  Google Scholar 

  16. A.K. Zak, W.C. Gan, W.H. Abd. Majid, Majid Darroudi, T.S. Velayuthan, Cer. Int. 37, 1653 (2011)

    Article  CAS  Google Scholar 

  17. M.B. Suresh, T.H. Yeh, C.C. Yu, C.C. Chou, Ferroelectrics 381, 80 (2009)

    Article  CAS  Google Scholar 

  18. S. Firmino Mendes, C.M. Costa, V. Sencadas, J. Serrado Nunes, P. Costa, R. Gregorio Jr., S. Lanceros-Mendez, Appl. Phys. A 96, 899 (2009)

    Article  CAS  Google Scholar 

  19. R. Gregorio Jr., M. Cestari, F.E. Bernardino, J. Mater. Sci. 31, 2925 (1996)

    Article  CAS  Google Scholar 

  20. R.W. Schwartz, J. Ballato, G.H. Haertling, in Piezoelectric and Electro-Optic Ceramics, Ceramic Materials for Electronics, 3rd edn., ed. by R.C. Buchanan (Marcel & Dekker, New York, 2004), pp. 249–250

    Google Scholar 

  21. M. Shoaib, Y. Faheem, A. Rauf, J. Aust. Ceram. Soc. 42, 67 (2006)

    CAS  Google Scholar 

  22. P.J. Haines, Thermal Methods of analysis, Principles, Applications and Problems, 1st edn. (Chapman and Hall, London, 1995), pp. 63–65

    Book  Google Scholar 

  23. D.S. Rana, D.K. Chaturvedi, J.K. Quamara, Optoelectron. Adv. Mater. Rapid Commun. 4, 838 (2010)

    CAS  Google Scholar 

  24. Z.M. Dang, Y. Shen, C.W. Nan, Appl. Phys. Lett. 81, 4814 (2002)

    Article  CAS  Google Scholar 

  25. C.V. Chanmal, J.P. Jog, Exp. Polym. Lett. 2, 294 (2008)

    Article  CAS  Google Scholar 

  26. T.J. Moon, H.G. Yeo, J.C. Hyun, Polym. Soc. Korea 12, 347 (1988)

    CAS  Google Scholar 

  27. A.R. Blythe, Electrical Properties of Polymers, 1st edn. (Cambridge University Press, Cambridge, 1979), pp. 38–39

    Google Scholar 

  28. S. Sen, S.K. Mishra, J. Phys. D Appl. Phys. 41, 1 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Siddiq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aftab, S., Hall, D.A., Aleem, M.A. et al. Low field ac study of PZT/PVDF nano composites. J Mater Sci: Mater Electron 24, 979–986 (2013). https://doi.org/10.1007/s10854-012-0861-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0861-z

Keywords

Navigation