Skip to main content
Log in

Synthesis and electrical behavior study of Mn3O4 nanoceramic powder for low temperature NTC thermistor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Monodispersed Mn3O4 nanoparticles (NPs) were synthesized by reducing KMnO4 at room temperature in the presence of cetyltetrabutylammonium bromide surfactant and short chain tetra-n-butylammonium bromide co-surfactant. Structural characterization done through XRD, TEM and FT-IR analysis techniques showed mono dispersity (5–8 nm) and capping of the NPs with surfactants. The temperature dependent behavior of dc resistivity of the nanopowder pellets showed reproducible NTC characteristics over a range of 40–200 °C with two thermistor constants (β1 = 10,897 K for 40 °C < T < 107 °C and β2 = 1,529 K for 107 °C < T < 190 °C) and a negative temperature co-efficient of resistance (α = −0.111 K−1 at 40 °C). The thermistor constant (β1) and NTC values are found to be higher than that of bulk Mn3O4 in range of 40 °C < T < 107 °C. This observed behavior implies an enhanced sensitivity in nano-powder based thermistors. Temperature and frequency dependent impedance behavior of the as-synthesized samples evaluated over a temperature range of 40–140 °C and a frequency range of 1 kHz to 1 MHz delineates the role of electron hopping between Mn2+ and Mn3+ in the conduction process. These studies present monodispersed Mn3O4 NPs as promising material for NTC thermistor in the low temperature range 40 °C < T < 107 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Fraden, Handbook of modern sensors: physics, designs, and applications, 3rd edn. (Springer Science, New York, 2003)

    Google Scholar 

  2. http://www.sequoia.co.uk/White%20papers/Advantages%20of%20NTC%20Thermistors%20-%20Dec%202003.pdf. 13 Oct 2011

  3. http://www.wuntronic.de/sensors/therm_appl.htm. 13 Oct 2010

  4. http://en.wikipedia.org/wiki/Thermistor. 13 Oct 2010

  5. B.M. Zeffert, S. Hormats, Application of thermistors to cryoscopy. Anal. Chem. 21, 1420–1422 (1949)

    Article  CAS  Google Scholar 

  6. E.A. Boucher, J. Chem. Educ. 44, A935 (1967)

    Article  CAS  Google Scholar 

  7. A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties and Applications (Chapman & Hall, London, 1990), p. p141

    Google Scholar 

  8. D.C. Hill, H.L. Tuller, in Ceramic Sensors: Theory and Practice, ed. by R. Buchanan (Marcel Dekker, New York, 1986), p. 323

    Google Scholar 

  9. D. Saha, A.D. Sharma, A. Sen, H.S. Maiti, Preparation of bixbyite phase (MnxFe1−x)2O3 for NTC thermistor applications. Mat. Lett. 55, 403 (2002)

    Article  CAS  Google Scholar 

  10. M. Hosseini, The effect of cation composition on the electrical properties and aging of Mn-Co-Ni thermistors. Ceram. Int. 26, 245–249 (2000)

    Article  CAS  Google Scholar 

  11. K. Majid, S. Awasthi, M.L. Singla, Low temperature sensing capability of polyaniline and Mn3O4 composite as NTC material. Sens. Actuators. A Phys. 135, 113–118 (2007)

    Article  Google Scholar 

  12. K. Park, D.Y. Bang, Electrical properties of Ni–Mn–Co–(Fe) oxide thick-film NTC thermistors prepared by screen printing. J. Mater. Sci. Mater. Electron. 14, 81–87 (2003)

    Article  CAS  Google Scholar 

  13. H. Einaga, A. Ogata, Benzene oxidation with ozone over supported manganese oxide catalysts: effect of catalyst support and reaction conditions. J. Hazard. Mate. 164, 1236 (2009)

    Article  CAS  Google Scholar 

  14. L.C. Wang, X.S. Huang, Q. Liu, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan, J.H. Zhuang, Gold nanoparticles deposited on manganese(III) oxide as novel efficient catalyst for low temperature CO oxidation. J. Catal. 259, 66 (2008)

    Article  CAS  Google Scholar 

  15. M. Kang, E.D. Park, J.M. Kim, J.E. Yie, Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl. Catal. A 327, 261 (2007)

    Article  CAS  Google Scholar 

  16. N. Imamura, T. Mizoguchi, H. Yamauchi, M. Karppinen, Multivariate data analysis approach to understand magnetic properties of perovskite manganese oxides. J. Solid State Chem. 181, 1195 (2008)

    Article  CAS  Google Scholar 

  17. S.B. Ma, K.W. Nam, W.S. Yoon, S.M. Bak, X.Q. Yang, B.W. Cho, K.B. Kim, Nano-sized lithium manganese oxide dispersed on carbon nanotubes for energy storage applications. Electrochem. Commun. 11, 1575 (2009)

    Article  CAS  Google Scholar 

  18. K.W. Nam, C.W. Lee, X.Q. Yang, B.W. Cho, W.S. Yoon, K.B. Kim, Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate: Supercapacitive behaviour in aqueous and organic electrolytes. J. Power Sources 188, 323 (2009)

    Article  CAS  Google Scholar 

  19. M.L. Singla, S. Sharma, B. Raj, V.R. Harchekar, Characterization of transition metal oxide ceramic material for continuous thermocouple and its use as NTC fire wire sensor. Sens. Actuators A Phys. 120, 337 (2005)

    Article  Google Scholar 

  20. M. Lee, M. Yoo, Detectivity of thin-film NTC thermal sensors. Sens. Actuators A Phys. 96, 97–104 (2002)

    Article  Google Scholar 

  21. J. Ryu, K.Y. Kim, J.J. Choi, B.D. Hahn, W.H. Yoon, B.K. Lee, D.S. Park, C. Park, Highly dense and nanograined NiMn2O4 negative temperature coefficient thermistor thick films fabricated by aerosol-deposition. J. Am. Ceram. Soc. 92, 3084–3087 (2009)

    Article  CAS  Google Scholar 

  22. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements (Pergamon, New York, 1984)

    Google Scholar 

  23. M.L. Singla, R. Baldev, H.V. Rajaram, R.P. Bajpai, Ceramic mixture having negative temperature coefficient, a thermistor containing the ceramic mixture and the process for preparing same, US Patent No 6878311 dated 12 Apr 2005

  24. J.L. Dormann, D. Fiorani, Magnetic properties of fine particles: proceedings of the International Workshop on Studies of Magnetic Properties of Fine Particles and their Relevance to Materials Science, Rome, Italy, November 4-8, 1991, North-Holland, 1992

  25. S. Komaba, S.T. Myung, N. Kumagai, T. Kanouchi, K. Oikawa, T. Kamiyama, Hydrothermal synthesis of high crystalline orthorhombic LiMnO2 as a cathode material for Li-ion batteries. Solid State Ionics 152, 311 (2002)

    Article  Google Scholar 

  26. P. Gibot, L. Laffont, Hydrophilic and hydrophobic nano-sized Mn3O4 particles. J. Solid State Chem. 180, 695 (2007)

    Article  CAS  Google Scholar 

  27. B.L. Cushing, V.L. Kolesnichenko, C. O’Connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles. J. Chem. Rev. 104, 3893 (2004)

    Article  CAS  Google Scholar 

  28. L. Tao, C.-G. Sun, M.-L. Fan, C.-J. Huang, H.-L. Wu, Z.-S. Chao, H.-S. Zhai, A redox-assisted supramolecular assembly of manganese oxide nanotube. Mater. Res. Bull. 41, 2035 (2006)

    Article  CAS  Google Scholar 

  29. P. Umadevi, C.L. Nagendra, Preparation and characterisation of transition metal oxide micro-thermistors and their application to immersed thermistor bolometer infrared detectors. Sens. Actuators A Phys. 96, 114–124 (2002)

    Article  Google Scholar 

  30. M.L. Singla, A. Negi, V. Mahajan, K.C. Singh, D.V.S. Jain, Catalytic behavior of nickel nanoparticles stabilized by lower alkylammonium bromide in aqueous medium. Appl. Catal. A-Gen. 323, 51–57 (2007)

    Article  CAS  Google Scholar 

  31. L. Wang, X. Wu, M. Pei, Z. Wu, X. Li, X. Tao, Facile synthesis of multi-branched gold nanostructures through a TBAB-assisted route in aqueous solution and their SERS property. Chinese J. Chem. 29, 185–190 (2011)

    Article  Google Scholar 

  32. M. Ishii, M. Nakahira, T. Yamanaka, Infrared absorption spectra and cation distributions in (Mn, Fe)3O4. Solid State Commun. 11, 209 (1972)

    Article  CAS  Google Scholar 

  33. W.Z. Wang, C.K. Xu, G.H. Wang, Y.K. Liu, C.L. Zheng, Preparation of smooth single-crystal Mn3O4 Nanowires. Adv. Mat. 14, 837 (2002)

    Article  CAS  Google Scholar 

  34. O. Bricker, Some stability relations in the system MnO2-H2O at 25 °C and one atmosphere total pressure. Am. Mineral. 50, 1296 (1965)

    CAS  Google Scholar 

  35. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edn. (Prentice Hall, New Jersey, 2001), p. p170

    Google Scholar 

  36. B.L. Cushing, V.L. Kolenichenko, C.J. O’Connor, Chem. Rev. 104, 3893 (2004)

    Article  CAS  Google Scholar 

  37. S. Ashoka, G. Nagaraju, G.T. Chandrappa, Mater. Lett. 64, 2538–2540 (2010)

    Article  CAS  Google Scholar 

  38. J.C. Southard, G.E. Moore, High-temperature heat content of Mn3O4, MnSiO3 and Mn3C. J. Am. Chem. Soc. 64, 1769 (1942)

    Article  CAS  Google Scholar 

  39. A. Azam, A.S. Ahmed, M. Chaman, A.H. Naqui, Investigation of electrical properties of Mn doped tin oxide nanoparticles using impedance spectroscopy. J. Appl. Phys. 108, 094329 (2010)

    Article  Google Scholar 

  40. A.M.M. Farea, S. Kumar, K.M. Batoo, Influence of the doping of Ti4 + ions on electrical and magnetic properties of Mn1+xFe2−2xTixO4 ferrite. J. Alloys Compd. 464, 361 (2008)

    Article  CAS  Google Scholar 

  41. A. Baykal, N. Bıtrak, B. Unal, H. Kavas, Z. Durmus, S. öZden, M.S. Toprak, Polyol synthesis of (polyvinylpyrrolidone) PVP-Mn3O4 nanocomposite. J. Alloys Compd. 502, 199 (2010)

    Article  CAS  Google Scholar 

  42. M.G. Bellino, D.G. Lammas, N.E.W. De Reca, A mechanism for the fast ionic transport in nanostructured oxide-ion solid electrolytes. Adv. Mater. 18, 3005–3009 (2006)

    Article  CAS  Google Scholar 

  43. S.S. Umare, U.S. Waware, S. Ingole, Int. J. Polym. Anal. Charact. 10, 1 (2005)

    Article  CAS  Google Scholar 

  44. S.S. Umare, B.H. Shambharkar, R.S. Ningthoujam, Synthesis and characterization of polyaniline-Fe3O4 nanocomposite: Electrical conductivity, magnetic, electrochemical studies. Synth. Met. 160, 1815–1821 (2010)

    Article  CAS  Google Scholar 

  45. R. Regmi, R. Tackett, G. Lawes, Suppression of low-temperature magnetic states in Mn3O4 nanoparticles. J. Magn. Magn. Mater. 321, 2296 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Pawan Kapur, Director, CSIO (CSIR) for permitting us to carry out these studies. The authors are also thankful to Dr. Tripathi (Physic Department, Punjab University), Mamta Sharma, and Dr. Akashdeep (CSIO) for their timely contributions in experimental work, valuable inputs and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Singla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohli, P.S., Devi, P., Reddy, P. et al. Synthesis and electrical behavior study of Mn3O4 nanoceramic powder for low temperature NTC thermistor. J Mater Sci: Mater Electron 23, 1891–1897 (2012). https://doi.org/10.1007/s10854-012-0680-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0680-2

Keywords

Navigation