Skip to main content
Log in

Optical studies of electrodeposited ZnCuTe ternary nanowire arrays

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

An Erratum to this article was published on 24 June 2012

Abstract

The optical properties of electrodeposited zinc copper telluride (ZnCuTe) ternary nanowires on ITO substrate using polycarbonate membrane (Whatman) of diameter 200,100 and 50 nm have been studied and reported in this paper. Scanning electron microscopy confirmed the formation of the standing nanowires having uniform diameter equal to the diameter of the template used. UV–vis absorption and photoluminescence (PL) spectroscopy were used for optical studies. The optical band gaps of 200, 100 and 50 nm have been calculated as 3.19, 3.39 and 3.57 eV, respectively using UV–vis spectroscopy. The UV–visible absorption spectrometry reveals the absorption spectra of 200, 100 and 50 nm shows a blue shift. UV–visible absorption depicts that the band gap increases with decrease in the diameter size of the nanowires. Several broad emission lines have been observed over a wide wavelength range (390–690 nm) of visible light spectrum in the PL spectra of ZnCuTe nanowires of diameter 200, 100 and 50 nm. A good emission peak at around 615 nm has been observed in all nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. Qian, Y. Li, S. Gradecak, D. Wang, C.J. Barrelet, C.M. Lieber, Nano Lett. 4, 1975–1979 (2004)

    Article  CAS  Google Scholar 

  2. F. Qian, S. Gradecak, Y. Li, C.Y. Wen, C.M. Lieber, Nano Lett. 5, 2287–2291 (2005)

    Article  CAS  Google Scholar 

  3. S. Gradecak, F. Qian, Y. Li, H.G. Park, C.M. Lieber, Appl. Phys. Lett. 87, 173111 (2005)

    Article  Google Scholar 

  4. L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, Appl. Phys. Lett. 91, 233117 (2007)

    Article  Google Scholar 

  5. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, 455–459 (2005)

    Article  CAS  Google Scholar 

  6. X.F. Daun, Y. Huang, Y. Cui, J.F. Wang, C.M. Lieber, Nature 409, 66 (2001)

    Article  Google Scholar 

  7. J.F. Wang, M.S. Gudiksen, X.F. Duan, Y. Cui, C.M. Lieber, Science 293, 1455 (2001)

    Google Scholar 

  8. J. Jie, W. Zhang, I. Bello, C. Lee, S. Lee, Nano Today 5(4), 313–336 (2010)

    Article  CAS  Google Scholar 

  9. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003)

    Article  CAS  Google Scholar 

  10. H.B. Huo, L. Dai, D.Y. Xia, G.Z. Ran, L.P. You, B.R. Zhang, G.G. Qin, J. Nanosci. Nanotechnol. 6(4), 1182–1184 (2006)

    Article  CAS  Google Scholar 

  11. Q. Wu, M. Litz, X.C. Zhang, Appl. Phys. Lett. 68, 2924 (1996)

    Article  CAS  Google Scholar 

  12. S. Bhunia, D.N. Bose, J. Cryst. Growth 186, 535 (1998)

    Article  CAS  Google Scholar 

  13. A. Pistone, A.S. Arico, P.L. Antonucci, D. Silvestro, V. Antonucci, Solar Energy Mater. Solar Cells 53, 255–267 (1998)

    Article  CAS  Google Scholar 

  14. T.A. Gessert, T. Coutts, A. Duda, R. Dhere, S. Johnston, D. Levi, in NCPV and Solar Program Review Meeting 2003 (Denver, Colorado, March 24–26 2003)

  15. W. Faschinger, J. Nurnberger, E. Kurtz, R. Schmitt, M. Korn, K. Schull, M. Ehinger, Semicond. Sci. Technol. 12, 1291 (1997)

    Article  CAS  Google Scholar 

  16. N. Magnea, E. Molva, D. Bensahel, Phys. Rev. B 22(6), 2983–2987 (1980)

    Article  CAS  Google Scholar 

  17. A.T.J. Baker, F.J. Bryant, J.E. Lowther, J. Phys. C: Solid State Phys. 6, 780–783 (1973)

    Article  CAS  Google Scholar 

  18. V.S. John, T. Mahalingam, J.P. Chu, Solid State Electron. 49, 3–7 (2005)

    Article  CAS  Google Scholar 

  19. P.L. Antonucci, S. Antonino, A.P. Scardi, V. Antonucci, J. Solid State Electrochem. 6, 16–20 (2001)

    Article  CAS  Google Scholar 

  20. H.W. Liang, S. Liu, S.H. Yu, Adv. Mater. 22, 3925–3937 (2010)

    Article  CAS  Google Scholar 

  21. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, H. Kakibayashi, J. Appl. Phys. 77, 447 (1995)

    Article  CAS  Google Scholar 

  22. A.M. Morales, C.M. Lieber, Science 279, 208–211 (1998)

    Article  CAS  Google Scholar 

  23. T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, W.E. Buhro, Science 270, 1791 (1995)

    Article  CAS  Google Scholar 

  24. J.R. Heath, F.K. Legoues, Chem. Phys. Lett. 208, 263 (1993)

    Article  CAS  Google Scholar 

  25. J. Zhan, X. Yang, D. Wang, S. Li, Y. Xie, Y. Xia, Y. Qian, Adv. Mater. 12, 1348 (2000)

    Article  CAS  Google Scholar 

  26. Z.Y. Tang, N.A. Kotov, M. Giersig, Science 297, 237 (2002)

    Article  CAS  Google Scholar 

  27. C.R. Martin, Science 266, 1961 (1994)

    Article  CAS  Google Scholar 

  28. S. Choopun, H. Tabata, T. Kawai, J. Cryst. Growth 274, 167–172 (2005)

    Article  CAS  Google Scholar 

  29. N.H. Kim, H.W. Kim, C. Seoul et al., Mater. Sci. Eng. B 111, 131–134 (2004)

    Article  Google Scholar 

  30. A. Colli, S. Hofmann, A.C. Ferrari, F. Martelli, S. Rubini, C. Ducati, A. Franciosi, J. Robertson, Nanotechnology 16, S139–S142 (2005)

    Article  CAS  Google Scholar 

  31. H. Masuda, K. Fukuda, Science 268, 1466–1468 (1995)

    Article  CAS  Google Scholar 

  32. R.L. Fleischer, P.B. Price, R.M. Walker (eds.), in Nuclear tracks in solids: Principles and Applications (University of California Press, Berkeley, 1975), p. 605

  33. W. Kautek, S. Reetz, S. Pentzien, Electrochim. Acta 40, 1461–1468 (1995)

    Article  CAS  Google Scholar 

  34. S. Kumar, A. Vohra, S.K. Chakarvarti, J. Mater. Sci. Mater. Electron. doi:10.1007/s10854-011-0615-3 (2011)

  35. E.A. Davis, N.F. Mott, Phil. Magn. 22, 903 (1970)

    Article  CAS  Google Scholar 

  36. L. Liang, Y. Yang, X. Huang, G. Li, L. Zhang, J. Phys. Chem. B 109, 12394–12398 (2005)

    Article  Google Scholar 

  37. S. Kumar, V. Kundu, A. Vohra, S.K. Chakarvarti, J. Mater. Sci.: Mater. Electron. 22, 995–999 (2011)

    Article  CAS  Google Scholar 

  38. P.O. Holtz, B. Monemar, Phys. Rev. B 33(2), 1085–1091 (1986)

    Article  CAS  Google Scholar 

  39. P.O. Holtz, B. Monemar, H.P. Gislason, C. Uihlein, P.L. Liu, Phys. Rev. B 32(6), 3730–3744 (1985)

    Article  CAS  Google Scholar 

  40. F. Pfisterer, H.W. Schock, J. Cryst. Growth 59, 432–439 (1982)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the University Grants Commission, New Delhi, India for their financial support through faculty development scheme under major research project Grant no. F.No.34-55\2008 (SR). We thank Dr. D. Harnath, Scientist E, Luminescent Materials Group, National Physical Laboratory, New Delhi for providing PL measurement facility. We are also thankful to Dr. Sanjeev Aggarwal, Physics Department, Kurukshetra University, Kurukshetra and Dr. Ruchita Pal, Senior Research Fellow in Advanced Instrumentation Research Facility (AIRF), Jawaharlal Nehru University, New Delhi for providing UV–vis Spectroscopy and SEM facility respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Vohra, A. & Chakarvarti, S.K. Optical studies of electrodeposited ZnCuTe ternary nanowire arrays. J Mater Sci: Mater Electron 23, 1793–1797 (2012). https://doi.org/10.1007/s10854-012-0664-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0664-2

Keywords

Navigation