Skip to main content
Log in

Synthesis and characterization of copper telluride nanowires via template-assisted dc electrodeposition route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Using polycarbonate track-etch membranes (Whatman), copper telluride (Cu1.75Te) nanowires of diameter 100 nm and 50 nm have been synthesized electrochemically via template-assisted electrodeposition technique on indium tin oxide (ITO) coated glass from aqueous acidic solution of copper (II) sulphate (CuSO4·5H2O) and tellurium oxide (TeO2) at room temperature (30 °C). Scanning electron microscopy (SEM) reveals the morphology of the nanowires having uniform diameter equal to the diameter of the template used. X-ray diffraction (XRD) pattern showed the structure corresponding to the hexagonal structure of copper telluride and single-crystalline. Using UV–visible spectrometry, the optical band gap of copper telluride nanowires was found to be 3.092 eV for 100 nm and 3.230 eV for 50 nm diameters. The photoluminescence (PL) studies shows higher intensity and broad spectrum in the blue region (450–475 nm) of visible light spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Dai, E.W. Wang, Y.Z. Lu, S. Fan, C.M. Lieber, Nature 375, 769 (1995)

    Article  CAS  Google Scholar 

  2. A.P. Alivisatios, Science 271, 933 (1996)

    Article  Google Scholar 

  3. D. Routkoyitch, A.A. Tager, J. Haruyama, D. Almawlawi, M. Moskorvits, J.M. Xu, IEEE Trans. Electron Dev. 43, 1646 (1996)

    Article  Google Scholar 

  4. X. Daun, C.M. Lieber, Adv. Mater. 12, 298 (2000)

    Article  Google Scholar 

  5. B. Das, S.P. McGinnis, Appl. Phys. A 71, 681 (2000)

    Article  CAS  Google Scholar 

  6. C.M. Lieber, Sci. Am. 285, 58 (2001)

    Article  CAS  Google Scholar 

  7. Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947 (2001)

    Article  CAS  Google Scholar 

  8. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003)

    Article  CAS  Google Scholar 

  9. J.B. Chaudhari, N.G. Deshpande, Y.G. Gudage, A. Gosh, H.B. Huse, R. Sharma, Appl. Surf. Sc. 54, 21–6810 (2008)

    Google Scholar 

  10. B. Krishnan, A. Arato, E. Cardenas, T.K. Das Roy, G.A. Castillo, Appl. Surf. Sc. 54, 10–3200 (2008)

    Google Scholar 

  11. H.W. Schock, R. Noufi, Prog. Photovolt. Res. Appl. 8, 151 (2000)

    Article  CAS  Google Scholar 

  12. F. Hanus, L.D. Laude, SPIE 196, 1279 (1990)

    Google Scholar 

  13. S.T. Lakshmikumar, Sol. Energy Mater. Sol. Cell 7, 32 (1994)

    Google Scholar 

  14. F. Mongellaz, A. Fillot, De Lallee, J. Proc. SPIE-Int. Soc. Opt. Eng. 156, 2227 (1994)

    Google Scholar 

  15. L.Z. Zhang, Z.H. Ai, F.L. Jia, L. Liu, X.L. Hu, J.C. Yu, Chem. A Eur. J. 12, 4185–4190 (2006)

    Article  CAS  Google Scholar 

  16. I. Gurrappa, L. Binder, Sci. Technol. Adv. Mater. 9, 043001 (2008)

    Article  Google Scholar 

  17. S.K. Chakarvarti, J. Vetter, Nuc. Instrum. Methods in Phys. Res B 62, 109–162 (1991)

    Article  Google Scholar 

  18. S. Kumar, S. Kumar, S.K. Chakarvarti, J., Mater. Sci. Lett. 22, 1323 (2003)

    Article  CAS  Google Scholar 

  19. ASTM Data File Nos. 45-1287, 32-0458

  20. E.A. Davis, N.F. Mott, Phil. Magn. 22, 903 (1970)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by University Grants Commission, New Delhi, India under plan for financial support for major research project Grant No. F.No.34-55\2008 (SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Kundu, V., Vohra, A. et al. Synthesis and characterization of copper telluride nanowires via template-assisted dc electrodeposition route. J Mater Sci: Mater Electron 22, 995–999 (2011). https://doi.org/10.1007/s10854-010-0249-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-010-0249-x

Keywords

Navigation