Skip to main content
Log in

Al doping effect on microstructure, electrical properties, dielectric characteristics, and aging behaviors of ZPCCY-based varistors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Al doping effect on the microstructure, electrical properties, dielectric characteristics, and aging behaviors of ZPCCY-based varistors was investigated in the range of 0.0–0.1 mol%. The breakdown electric field in the E-J characteristics decreased in a wide range from 4,921 to 475 V/cm with increasing amounts of Al2O3. The nonlinear properties were improved by increasing amounts of Al2O3 up to 0.005 mol%, whereas the further additions caused it to decrease. The highest nonlinear coefficient (α = 45.2) was obtained when Al2O3 concentration is 0.005 mol%. The Al2O3 acted as a donor due to the increase of electron concentration in the small range of 0.0–0.1 mol%. On the other hand, an appropriate addition of Al2O3 in the range of 0.001–0.005 mol% was found to significantly improve the electrical stability against DC accelerated aging stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.M. Levinson, H.R. Philipp, Am. Ceram. Soc. Bull. 65, 639 (1986)

    CAS  Google Scholar 

  2. T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990). doi:10.1111/j.1151-2916.1990.tb05232.x

    Article  CAS  Google Scholar 

  3. Y.-S. Lee, T.-Y. Tseng, J. Am. Ceram. Soc. 75, 1636 (1992). doi:10.1111/j.1151-2916.1992.tb04236.x

    Article  CAS  Google Scholar 

  4. K. Mukae, Ceram. Bull. 66, 1329 (1987)

    CAS  Google Scholar 

  5. A.B. Alles, L. Burdick, J. Appl. Phys. 70, 6883 (1991). doi:10.1063/1.349812

    Article  ADS  CAS  Google Scholar 

  6. A.B. Alles, R. Puskas, G. Callahan, V.L. Burdick, J. Am. Ceram. Soc. 76, 2098 (1993). doi:10.1111/j.1151-2916.1993.tb08339.x

    Article  CAS  Google Scholar 

  7. Y.-S. Lee, K.-S. Liao, T.-Y. Tseng, J. Am. Ceram. Soc. 79, 2379 (1996). doi:10.1111/j.1151-2916.1996.tb08986.x

    Article  CAS  Google Scholar 

  8. S.-Y. Chun, K. Shnozaki, N. Mizutani, J. Am. Ceram. Soc. 82, 3065 (1999)

    Article  CAS  Google Scholar 

  9. N. Wakiya, S.Y. Chun, C.H. Lee, O. Sakurai, K. Shinozaki, N. Mizutani, J. Electroceram. 4(S1), 15 (1999)

    Article  CAS  Google Scholar 

  10. C.-W. Nahm, Mater. Lett. 47, 182 (2001). doi:10.1016/S0167-577X(00)00262-7

    Article  CAS  Google Scholar 

  11. C.-W. Nahm, Solid. State. Commun. 126, 281 (2003). doi:10.1016/S0038-1098(03)00062-0

    Article  ADS  CAS  Google Scholar 

  12. C.-W. Nahm, Solid State Commun. 127, 389 (2003). doi:10.1016/S0038-1098(03)00436-8

    Article  ADS  CAS  Google Scholar 

  13. C.-W. Nahm, Mater. Lett. 57, 1317 (2003). doi:10.1016/S0167-577X(02)00979-5

    Article  CAS  Google Scholar 

  14. C.-W. Nahm, J. Mater. Sci. Mater. Electron. 16, 345 (2005). doi:10.1007/s10854-005-1145-7

    Article  CAS  Google Scholar 

  15. C.-W. Nahm, Mater. Sci. Eng. B 137, 112 (2007). doi:10.1016/j.mseb.2006.11.009

    Article  CAS  Google Scholar 

  16. W.G. Carlson, T.K. Gupta, J. Appl. Phys. 53, 5746 (1882). doi:10.1063/1.331463

    Article  ADS  Google Scholar 

  17. J. Fan, R. Freer, J. Appl. Phys. 77, 4795 (1995). doi:10.1063/1.359398

    Article  ADS  CAS  Google Scholar 

  18. S.I. Nunes, R.C. Bradt, J. Am. Ceram. Soc. 78, 2469 (1995). doi:10.1111/j.1151-2916.1995.tb08687.x

    Article  CAS  Google Scholar 

  19. M.-H. Wang, K.-A. Hu, B.-Y. Ahao, N.-F. Ahang, Mater. Chem. Phys. 100, 142 (2006). doi:10.1016/j.matchemphys.2005.12.023

    Article  CAS  Google Scholar 

  20. S. Bernik, N. Daneu, J. Eur. Ceram. Soc. 27, 3161 (2007). doi:10.1016/j.jeurceramsoc.2007.02.176

    Article  CAS  Google Scholar 

  21. J.C. Wurst, J.A. Nelson, J. Am. Ceram. Soc. 55, 109 (1972). doi:10.1111/j.1151-2916.1972.tb11224.x

    Article  CAS  Google Scholar 

  22. M. Mukae, K. Tsuda, I. Nagasawa, J. Appl. Phys. 50, 4475 (1979). doi:10.1063/1.326411

    Article  ADS  CAS  Google Scholar 

  23. L. Hozer, Semiconductor Ceramics: Grain Boundary Effects (Ellis Horwood, London, 1994), 22 pp

  24. J. Fan, R. Freer, J. Am. Ceram. Soc. 77, 2663 (1994). doi:10.1111/j.1151-2916.1994.tb04659.x

    Article  CAS  Google Scholar 

  25. Y. Zhang, J. Han, Mater. Lett. 60, 2522 (2006). doi:10.1016/j.matlet.2006.01.030

    Article  CAS  Google Scholar 

  26. T.K. Gupta, W.G. Carlson, J. Mater. Sci. 20, 3487 (1985). doi:10.1007/BF01113755

    Article  ADS  CAS  Google Scholar 

  27. K. Eda, A. Iga, M. Matsuoka, J. Appl. Phys. 51, 2678 (1980). doi:10.1063/1.327927

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choon-W. Nahm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nahm, CW. Al doping effect on microstructure, electrical properties, dielectric characteristics, and aging behaviors of ZPCCY-based varistors. J Mater Sci: Mater Electron 20, 718–726 (2009). https://doi.org/10.1007/s10854-008-9793-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9793-z

Keywords

Navigation