Skip to main content
Log in

Preparation, characterization and dielectric response of a high-breakdown-field ZnO-based varistor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, ZnO-based varistors with a high breakdown field were obtained through BaCO3 doping and sintering at a low temperature of 950 °C. The grain size of the ZnO samples decreased to 1.28 μm, and the breakdown field was enhanced to 3845 V/mm, which is approximately one order of magnitude higher than that of ordinary ZnO-based varistors. The dielectric responses of the ZnO-based varistors were measured in a wide frequency and temperature range. At 193 K, two dielectric relaxation peaks with activation energies of 0.22 and 0.35 eV were observed and considered intrinsic defects; these peaks did not vary with the preparation process. Another dielectric relaxation peak observed in a wide temperature range (283–463 K) was characterized in an impedance plot. This relaxation peak was ascribed to extrinsic defects related to the grain boundary. The resistance values of the grain boundary increased by two orders of magnitude through BaCO3 doping and lowering of the sintering temperature. The corresponding activation energy also increased from 0.53 to 0.74 eV. A parallel resistance–capacitance circuit model was proposed to interpret the variation in the electrical properties of ZnO-based varistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999)

    Article  Google Scholar 

  2. K. Eda, J. Appl. Phys. 49, 2964 (1978)

    Article  Google Scholar 

  3. S. Ma, Z.J. Xu, R.Q. Chu, J.G. Hao, L.H. Cheng, G.R. Li, J. Mater. Sci. Mater. Electron. 25, 3878 (2014)

    Article  Google Scholar 

  4. G.H. Chen, J.L. Li, C.L. Yuan, Y. Yang, J. Mater. Sci. Mater. Electron. 24, 3675 (2013)

    Article  Google Scholar 

  5. G.H. Chen, J.L. Li, X. Chen, X.L. Kang, Yuan, Y. Yang, J. Mater. Sci. Mater. Electron. 26, 2389 (2015)

    Article  Google Scholar 

  6. A.C. Cavallero, F.J. Valle, M. Villegas, C. Moure, P. Duran, J.F. Fernandez, J. Eur. Ceram. Soc. 20, 2767 (2000)

    Article  Google Scholar 

  7. J. Fan, R. Freer, J. Mater. Sci. 32, 415 (1997)

    Article  Google Scholar 

  8. W. Mielcarek, K. Prociow, J. Eur. Ceram. Soc. 21, 711 (2001)

    Article  Google Scholar 

  9. B.A. Haskell, S.J. Souri, M.A. Helfand, J. Am. Ceram. Soc. 82, 2160 (1999)

    Google Scholar 

  10. R. Einzinger, Appl. Surf. Sci. 3, 390 (1979)

    Article  Google Scholar 

  11. B.S. Chiou, M.C. Chung, J. Electron. Mater. 20, 885 (1991)

    Article  Google Scholar 

  12. J.F. Cordaro, Y. Shim, J.E. May, J. Appl. Phys. 60, 4186 (1986)

    Article  Google Scholar 

  13. Y.W. Hong, J.H. Kim, Ceram. Int. 30, 1307 (2004)

    Article  Google Scholar 

  14. C. Leach, K.D. Vernon-Parry, N.K. Ali, J. Elctroceram. 25, 188 (2010)

    Article  Google Scholar 

  15. P. Cheng, S. Li, L. Zhang, J. Li, Appl. Phys. Lett. 93, 012902 (2008)

    Article  Google Scholar 

  16. L.M. Levinson, H.R. Philipp, J. Appl. Phys. 47, 1117 (1976)

    Article  Google Scholar 

  17. M. Andres-Verges, A.R. West, J. Electroceram. 1, 125 (1997)

    Article  Google Scholar 

  18. X.T. Zhao, J.Y. Li, H. Li, S.T. Li, J. Appl. Phys. 111, 124106 (2012)

    Article  Google Scholar 

  19. S.N. Bai, T.Y. Tseng, J. Appl. Phys. 74, 695 (1993)

    Article  Google Scholar 

  20. K.S. Kirkpatrick, T.O. Mason, J. Am. Ceram. Soc. 77, 1493 (1994)

    Article  Google Scholar 

  21. S.A. Pianaro, E.C. Pereira, L.O.S. Bulhoes, E. Longo, J.A. Varela, J. Mater. Sci. 30, 133 (1995)

    Article  Google Scholar 

  22. J. Wu, T.T. Li, T. Qi, Q.W. Qin, G.Q. Li, B. Zhu, R. Wu, C.S. Xie, J. Electron. Mater. 41, 1970 (2012)

    Article  Google Scholar 

  23. J.Y. Li, X.T. Zhao, S.T. Li, M.A. Alim, J. Appl. Phys. 108, 104104 (2010)

    Article  Google Scholar 

  24. A.M. Awasthi, J. Kumar, J. Appl. Phys. 112, 054108 (2012)

    Article  Google Scholar 

  25. J.C. Wurst, J.A. Nelson, J. Am. Ceram. Soc. 55, 109 (1972)

    Article  Google Scholar 

  26. S.O. Kasap, Principles of Electronic Materials and Devices, 3rd edn. (McGraw-Hill Higher Education Publisher, New York, 2005)

    Google Scholar 

  27. C.W. Nahm, Mater. Sci. Semicond. Process. 26, 455 (2014)

    Article  Google Scholar 

  28. T.P. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990)

    Article  Google Scholar 

  29. L.M. Levinson, H.R. Philipp, J. Appl. Phys. 49, 6142 (1978)

    Article  Google Scholar 

  30. J.Y. Li, X.T. Zhao, F. Gu, S.T. Li, Appl. Phys. Lett. 100, 202905 (2012)

    Article  Google Scholar 

  31. R. Tripathi, A. Kumar, C. Bharti, T.P. Sinha, Curr. Appl. Phys. 10, 676 (2010)

    Article  Google Scholar 

  32. A. Kumar, B.P. Singh, R.N.P. Choudhary, A.K. Thakur, Mater. Chem. Phys. 99, 150 (2006)

    Article  Google Scholar 

  33. M.M. Costa, G.G.M. Pires, A.J. Terezo, A.S.B. Sombra, J. Appl. Phys. 110, 034107 (2011)

    Article  Google Scholar 

  34. Y.W. Hong, Y.J. Lee, S.K. Kim, J.H. Paik, J.H. Kim, Electron. Mater. Lett. 10, 903 (2014)

    Article  Google Scholar 

  35. R. Yu, H. Xue, Z.L. Cao, L. Chen, Z.X. Xiong, J. Eur. Ceram. Soc. 32, 1245 (2012)

    Article  Google Scholar 

  36. L. Chen, C.L. Chen, Y. Lin, Y.B. Chen, X.H. Chen, R.P. Bontchev, C.Y. Park, A.J. Jacobson, Appl. Phys. Lett. 80, 2317 (2003)

    Article  Google Scholar 

  37. R. Einzinger, in Advances in Ceramics: Grain Boundary Phenomena in Electronic Ceramics, ed. by L.M. Levinson (The American Ceramic Society, Columbus, 1981), p. 359

    Google Scholar 

  38. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    Article  Google Scholar 

  39. W. Li, R.W. Schwartz, A.P. Chen, J.S. Zhu, Appl. Phys. Lett. 90, 112901 (2007)

    Article  Google Scholar 

  40. K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341 (1941)

    Article  Google Scholar 

  41. C.P. Smyth, Dielectric Behavior and Structure: Dielectric Constant and Loss, Dipole Moment, and Molecular Structure, 1st edn. (McGraw-Hill, New York, 1955)

    Google Scholar 

  42. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Applications, 2nd edn. (Wiley, New York, 2005)

    Book  Google Scholar 

  43. Z. Zhou, K. Kato, T. Komaki, M. Yoshino, H. Yukawa, M. Morinaga, K. Morita, J. Eur. Ceram. Soc. 24, 139 (2004)

    Article  Google Scholar 

  44. K.Y. Yuan, G.R. Li, L.Y. Zheng, L.H. Cheng, L. Meng, Z. Yao, Q.R. Yin, J. Alloys Compd. 503, 507 (2010)

    Article  Google Scholar 

  45. K. Alabdullah, A. Bui, A. Loubiere, J. Appl. Phys. 69, 4046 (1991)

    Article  Google Scholar 

  46. M.A. de la Rubia, P. Leret, J. de Frutos, J.F. Fernandez, J. Am. Ceram. Soc. 95, 1866 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Young Scientists Fund of the National Natural Science Foundation of China (No. 51407019), the Fundamental Research Funds for the Central Universities (Grant No. 106112015CDJZR155509), and the research project provided by the State Key Laboratory of Power Transmission Equipment and System Security and New Technology at Chongqing University (Grant No. 2007DA10512716302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuetong Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Li, S., Liao, R. et al. Preparation, characterization and dielectric response of a high-breakdown-field ZnO-based varistor. J Mater Sci: Mater Electron 27, 9196–9205 (2016). https://doi.org/10.1007/s10854-016-4957-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4957-8

Keywords

Navigation