Skip to main content
Log in

Analysis of field dependent steady-state photocarrier grating measurements on polymorphous and microcrystalline silicon films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The steady-state photocarrier grating (SSPG) technique has been employed to investigate the field dependence of different polymorphous and microcrystalline silicon samples prepared by plasma enhanced chemical vapor deposition technique. The field-dependent experimental data at different temperatures are analyzed using two different approaches based on the small-signal photocurrent to extract more information on the electronic properties (like small signal mobility life time product, average drift length for holes and electrons,... etc.). The quality of the fits is tested by the χ2 indicator and the best choice of the transport parameters is obtained in each approach. The values of electron and hole drift mobilities obtained from one approach are compared to those found by others. The trapped charge density can be determined, for all samples, and correlated to minority-carrier diffusion length. It is also found that the decrease in temperature in a microcrystalline sample may result in an increase of the trapped charge density. This increase in trapped carrier density may be consistent with the increase in sub-gap absorption. Such behavior is found in agreement with that reported in the literature. In addition, the polymorphous samples that have values of diffusion lengths comparable to those of microcrystalline samples exhibit higher values of trapped carrier density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D. Ritter, E. Zeldov, K. Weiser, Appl. Phy. Lett. 49, 791 (1986)

    Article  CAS  Google Scholar 

  2. D. Ritter, K. Weiser, E. Zeldov, J. Appl. Phys. 62, 4563 (1987)

    Article  CAS  Google Scholar 

  3. D. Ritter, K. Weiser, E. Zeldov, Phys. Rev. B 38, 8296 (1988)

    Article  Google Scholar 

  4. Y.M. Li, Phys. Rev. B 42, 9025 (1990)

    Google Scholar 

  5. K. Hattori, H. Okamoto, Y. Hamakawa, Phys. Rev. B 45, 1126 (1992)

    Article  CAS  Google Scholar 

  6. C.D. Abel, G.H. Bauer, W.H. Bloss, Phil.l Mag. B 72, 51 (1995)

    Google Scholar 

  7. J.A. Schmidt, C. Longeaud, Appl. Phys. Lett. 85, 4412 (2004)

    Article  CAS  Google Scholar 

  8. J.A. Schmidt, C. Longeaud, Phys. Rev. B 71, 125208 (2005)

    Article  Google Scholar 

  9. R. Brueggemann, R.I. Badran, Mat. Res. Soc. Symp., vol 808, A9.7.1 (San Francisco-USA, 2004)

  10. H. Brummack, R. Brüggemann, H. N. Wanka, A. Hierzenberger, M.B. Schubert, Proc. 26th IEEE Photovoltaic Specialists Conf. (IEEE, Piscataway, 1997), p. 679

  11. R.S. Brueggemann, O. Kunz, Phys. Status Solidi B 234, R16 (2002)

  12. C. Longeaud, J.P. Kleider, M. Gauthier, R. Bruggemann, Y. Poissant, P. Roca, I. Cabarrocas, Mat. Res. Soc. Symp. (San Francisco-USA, 5–9 April 1999), pp. 501–506

  13. R. Brueggemann, J. Mat. Sci: Mater. Electron. 14, 629 (2003)

    Article  CAS  Google Scholar 

  14. J.P. Kleider, M. Gauthier, C. Longeaud, D. Roy, O. Saadane, R. Brueggemann, Thin Solid films 403–404, 188 (2002)

    Article  Google Scholar 

  15. T. Dylla, F. Finger, E.A. Schiff, Appl. Phys. Lett. 87, 0321103 (2005)

    Article  Google Scholar 

  16. L.C. Cheng, S. Wagner, Appl. Phys. Lett. 80, 440 (2002)

    Article  CAS  Google Scholar 

  17. J.P. Kleider, C. Longeaud, M. Gauthier, M. Meaudre, R. Meaudre, R. Butte, S. Vignoli, P. Roca I Cabarrocas, Appl. Phys. Lett 75, 3351 (1999)

    Article  CAS  Google Scholar 

  18. S. Reynolds, V. Smirnov, F. Finger, C. Main, R. Carius, J. Optoelect. Adv. Mat. 7, 91 (2005)

    CAS  Google Scholar 

  19. R. Brueggemann, J.P. Kleider, C. Longeaud, in Proceedings of the 16th European Photovoltaic Solar Energy Conference, vol 1.62 (Glasgow, UK, VB, 2000), p. 1/4

  20. R.I. Badran, N.N. Al-Awwad, J. Optoelectron. Adv. Mat. 8, 1466 (2006).

    CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to the Higher Council of Science and Technology (HCST), Jordan and the Deutsche Forschungsgemeinschaft (DFG), Bonn, Germany for their support. He is also grateful to Dr Rudi Brueggemann at Oldenburg University-Germany, and to H. Brummack and K. Bruhne, institute fur Physikalische Elektronik, Universitat Stuttgart, for providing the experimental data and providing the samples. I would like to thank Prof H. Ghassib for his proof reading of the final draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Badran.

Appendix A

Appendix A

In order to fit the field dependence experimental data of β, due to Li approach [4], an expression for the coefficient β is derived using the equation [1]:

$$ \beta=\frac{J(I_1+I_2)+\Delta J-J(I_1)}{J(I_1+I_2)-J(I_1)}, $$
(A.1)

where ΔJ = J(I 1, I 2) − J(I 1 + I 2). The current density of pure bias illumination J(I 1 + I 2) can be written as:

$$ J(I_1+I_2)=J(I_1)+\left.{\frac{\partial J}{\partial I}}\right|_{I=I_1}I_2.$$
(A.2)

Assuming a power law intensity dependence of current density J(I) of the form J(I)≈ (I)γ, J(I 1) can be obtained from Eq. (A.2) and written as:

$$ J(I_1)=\frac{J(I_1+I_2)}{1+\gamma(I_2/I_1)}. $$
(A.3)

Substitute Eqs. (1), (A.2) and (A.3) into Eq. (A.1) and after simple rearrangements we get:

$$ \beta=1-\frac{\left({\frac{g_1 \tau}{N_0}}\right)^2\left({\frac{a\left({a+l^2}\right)}{2}} \right)\left({1+\frac{1}{\gamma}\frac{I_2}{I_1}}\right)}{\left( {\left({a+\frac{\left({b+1}\right)^2}{4b}l^2}\right)\left({1+l^2} \right)+d^2}\right)^2+\frac{\left({b-1}\right)^2}{4b}d^2}. $$
(A.4)

This general formula for coefficient β is expressed in terms of eight parameters. In addition to the parameters of \(l\left({=\frac{2\pi L_{\rm amb}}{\Lambda}}\right)\), a(= τ/τdiel), b(= μ n p ), \(d\left({=\frac{2\pi\sqrt{\mu_n \mu_p \tau}E_0}{\Lambda}}\right)\), g 1/N 0 and τ which already exist in the original formula of ΔJ [4], two parameters of I 2/I 1 and, γ are introduced in the newly developed formula of β (Eq. (A.4)).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badran, R.I. Analysis of field dependent steady-state photocarrier grating measurements on polymorphous and microcrystalline silicon films. J Mater Sci: Mater Electron 18, 405–414 (2007). https://doi.org/10.1007/s10854-006-9047-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-006-9047-x

Keywords

Navigation