Skip to main content
Log in

Effects of laser parameters on optoelectronic properties of polycrystalline silicon films prepared by two-step annealing process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A two-step method combining furnace and laser annealing is proposed for improving the electrical and optical properties of amorphous silicon thin films on glass substrates. It is shown that the optical transmittance of the as-deposited silicon film increases from 27 to 31% following furnace annealing at 600 °C. However, the electrical resistance is too high to be measured using a four-point probe. The sheet resistance can be reduced to 270 kΩ/□ by annealing the as-deposited film using an ultra-violet (UV) laser. However, the resistance is still too high for TFT applications. The as-deposited silicon film is first furnace annealed at 600 °C for 12 h and then annealed using a UV laser with a laser power of 41 mW and a scanning speed of 60 mm/s. The optical transmittance and sheet resistance of the annealed film are found to be 29% and 1.17 kΩ/□, respectively. The X-ray diffraction (XRD) results suggest that the improved optical and electrical properties are the result of an amorphous-to-crystalline transformation of the silicon microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G.l. Comber, W.E. Spear, A. Ghaith, Amorphous-silicon field-effect device and possible application, Electronics Letters, Institution of Engineering and Technology 1979, pp. 179–181

  2. Chow MJ, Fomani AA, Moradi M, Chaji G, Lujan RA, Wong WS (2013) Effects of mechanical strain on amorphous silicon thin-film transistor electrical stability. Appl Phys Lett 102:233509

    Article  Google Scholar 

  3. Peter Seif J, Descoeudres A, Filipič M, Smole F, Topič M, Charles Holman Z, De Wolf S, Ballif C (2014) Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells. J Appl Phys 115:024502

    Article  Google Scholar 

  4. Shuichi Uchikoga N (2001) Ibaraki. Low temperature poly-Si TFT-LCD by excimer laser anneal, Thin Solid Films 383:19–24

    Google Scholar 

  5. Matsuyama T, Terada N, Baba T, Sawada T, Tsuge S, Wakisaka K, Tsuda S (1996) High-quality polycrystalline silicon thin film prepared by a solid phase crystallization method. J Non-Cryst Solids 198-200:940–944

    Article  Google Scholar 

  6. Dong Kim B, Jung H, Kim GB, Joo SK (2003) Solid phase crystallization of amorphous silicon on glass by thin film heater for thin film transistor (TFT) application. Microelectron J 34:767–771

    Article  Google Scholar 

  7. Watanabe T, Watakabe H, Sameshima T, Miyasaka M (2003) Electrical properties of solid-phase crystallized polycrystalline silicon films. Appl Phys A Mater Sci Process 77:87–92

    Article  Google Scholar 

  8. Mariucci L, Pecora A, Carluccio R, Fortunato G (2001) Advanced excimer laser crystallization techniques. Thin Solid Films 383:39–44

    Article  Google Scholar 

  9. Michaud JF, Rogel R, Mohammed-Brahim T, Sarret M, Bonnaud O (2005) Solid phase post-treatment of polysilicon films by a continuous argon laser. Thin Solid Films 487:81–84

    Article  Google Scholar 

  10. Shimoda T, Matsuki Y, Furusawa M, Aoki T, Yudasaka I, Tanaka H, Iwasawa H, Wang D, Miyasaka M, Takeuchi Y (2006) Solution-processed silicon films and transistors. Nature 440:783–786

    Article  Google Scholar 

  11. Nast O, Puzzer T, Koschier LM, Sproul AB, Wenham SR (1998) Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature. Appl Phys Lett 73:3214–3216

    Article  Google Scholar 

  12. Andrade K, Jang J, Moon BY (2001) Gold induced crystallization of amorphous silicon. J Korean Phys Soc 39:376–381

    Google Scholar 

  13. Yoon SY, Park SJ, Kim KH, Jang J (2001) Metal-induced crystallization of amorphous silicon. Thin Solid Films 383:34–38

    Article  Google Scholar 

  14. Zhang L, Shen H, Jiang X, Qian B, Han Z, Hou H (2013) Influence of annealing temperature on the properties of polycrystalline silicon films formed by rapid thermal annealing of a-Si:H films. J Mater Sci Mater Electron 24:4209–4212

    Article  Google Scholar 

  15. Budini N, Rinaldi PA, Arce RD, Schmidt JA, Koropecki RR, Buitrago RH (2012) Vacuum-enhanced nickel-induced crystallization of hydrogenated amorphous silicon. J Appl Phys 112:073506

    Article  Google Scholar 

  16. Jin Z, Bhat GA, Yeung M, Kwok HS, Wong M (1998) Nickel induced crystallization of amorphous silicon thin films. J Appl Phys 84:194–200

    Article  Google Scholar 

  17. Lin HK, Hsu WC (2014) Electrode patterning of ITO thin films by high repetition rate fiber laser. Appl Surf Sci 308:58–62

    Article  Google Scholar 

  18. Do W, Jin W-B, Choi J, Bae S-M, Kim H-J, Kim B-K, Park S, Hwang J-H (2014) Effect of flash lamp annealing on electrical activation in boron-implanted polycrystalline Si thin films. Mater Res Bull 58:164–168

    Article  Google Scholar 

  19. Kim M, Jin G, Kim K-B, Song J (2014) Characteristics of polycrystalline Si TFTs fabricated on glass substrates by excimer laser annealing with nickel-sputtered amorphous Si films. Displays 35:1–5

    Article  Google Scholar 

  20. Park JB, Kim DC, Kim YW (2017) Plasma electron annealing method for recrystallization of a-Si thin films. Thin Solid Films 622:111–114

    Article  Google Scholar 

  21. Wang X, He X, Mao W, Zhou Y, Lv S, He C (2016) Microstructure evolution of amorphous silicon thin films upon annealing studied by positron annihilation. Mater Sci Semicond Process 56:344–348

    Article  Google Scholar 

  22. Arguirov T, McHedlidze T, Akhmetov VD, Kouteva-Arguirova S, Kittler M, Rölver R, Berghoff B, Först M, Bätzner DL, Spangenberg B (2007) Effect of laser annealing on crystallinity of the Si layers in Si/SiO2 multiple quantum wells. Appl Surf Sci 254:1083–1086

    Article  Google Scholar 

  23. Palani IA, Vasa NJ, Singaperumal M (2008) Crystallization and ablation in annealing of amorphous-Si thin film on glass and crystalline-Si substrates irradiated by third harmonics of Nd3+:YAG laser. Mater Sci Semicond Process 11:107–116

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H.K., Huang, U.G. & Hong, S.Z. Effects of laser parameters on optoelectronic properties of polycrystalline silicon films prepared by two-step annealing process. Int J Adv Manuf Technol 93, 3159–3163 (2017). https://doi.org/10.1007/s00170-017-0767-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0767-2

Keywords

Navigation