Skip to main content
Log in

Improvement of sulfide stress corrosion cracking resistance of the Inconel 625/X80 weld overlay by post-weld heat treatment

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of post-weld heat treatment (PWHT) on the microstructure, penetration and distribution of hydrogen, and sulfide stress corrosion cracking (SSCC) behavior was investigated to improve the cracking resistance of Inconel 625/X80 dissimilar weld overlay. Among nine candidate PWHT procedures, only the PWHT at 620 °C/20 h could improve the SSCC resistance of the overlay as no crack but only shallow pits were observed in the fusion boundary (FB) region. This PWHT procedure decreased the microhardness, increased the fraction of low-angle grain boundaries, eliminated the susceptible microstructure to hydrogen embrittlement, and therefore enhanced the SSCC resistance of the heat-affected zone. Further, in addition to the decrease of misorientation at the FB, the enhanced SSCC resistance of the FB after PWHT was mainly owing to precipitation of dispersed M23C6 carbides, which may reduce the amount of diffusible hydrogen within the martensite layer and prevent localized hydrogen concentration from reaching the cracking threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Data and code availability

The raw/processed data required to reproduce these findings can be shared upon request.

References

  1. Xu LY, Jing HY, Han YD (2018) Effect of welding on the corrosion behavior of X65/Inconel 625 in simulated solution. Weld World 62:363–375. https://doi.org/10.1007/s40194-018-0549-y

    Article  CAS  Google Scholar 

  2. Farias F, Da Cruz Payão Filho J, Da Silva Júnior D et al (2019) Microstructural characterization of Ni-based superalloy 625 clad welded on a 9% Ni steel pipe by plasma powder transferred arc. Surf Coat Technol 374:1024–1037. https://doi.org/10.1016/j.surfcoat.2019.06.084

    Article  CAS  Google Scholar 

  3. Yin ZF, Zhao WZ, Lai WY et al (2009) Electrochemical behaviour of Ni-base alloys exposed under oil/gas field environments. Corros Sci 51(8):1702–1706. https://doi.org/10.1016/j.corsci.2009.04.019

    Article  CAS  Google Scholar 

  4. Mohtadi-Bonab MA, Szpunar JA, Collins L et al (2014) Evaluation of hydrogen induced cracking behavior of API X70 pipeline steel at different heat treatments. Int J Hydrogen Energy 39(11):6076–6088. https://doi.org/10.1016/j.ijhydene.2014.01.138

    Article  CAS  Google Scholar 

  5. Jia KN (2011) Effect of heat imput on microstructure and toughness of high strength bridge steel. Adv Mater Res 194:255–258. https://doi.org/10.4028/www.scientific.net/AMR.194-196.255

    Article  CAS  Google Scholar 

  6. Yang Y, Shi L, Xu Z et al (2015) Fracture toughness of the materials in welded joint of X80 pipeline steel. Eng Fract Mech 148:337–349. https://doi.org/10.1016/j.engfracmech.2015.07.061

    Article  Google Scholar 

  7. Turichin G, Kuznetsov M, Sokolov M et al (2015) Hybrid laser arc welding of X80 steel: influence of welding speed and preheating on the microstructure and mechanical properties. Phys Procedia 78:35–44. https://doi.org/10.1016/j.phpro.2015.11.015

    Article  CAS  Google Scholar 

  8. Pan C, Zhang Z (1994) Characteristics of the weld interface in dissimilar austentic-pearlitic steel welds. Mater Charact 33(2):87–92. https://doi.org/10.1016/1044-5803(94)90070-1

    Article  CAS  Google Scholar 

  9. Blicharski M, Rozmus-Górnikowska M (2017) TEM microstructure and chemical composition of transition zone between steel tube and an Inconel 625 weld overlay coating produced by CMT method. Arch Metall Mater 62(2):787–793. https://doi.org/10.1515/amm-2017-0117

    Article  CAS  Google Scholar 

  10. Dodge MF, Dong HB, Gittos MF (2014) Effect of post-weld heat treatment on microstructure evolution in dissimilar joints for subsea oil and gas systems. Mater Res Innovations 18(4):907–913. https://doi.org/10.1179/1432891714z.000000000807

    Article  Google Scholar 

  11. DuPont JN (2012) Microstructural evolution and high temperature failure of ferritic to austenitic dissimilar welds. Int Mater Rev 57(4):208–234. https://doi.org/10.1179/1743280412y.0000000006

    Article  CAS  Google Scholar 

  12. Dong LJ, Shi ZY, Zhang Y et al (2022) Microstructure and sulfide stress corrosion cracking of the Inconel 625/X80 weld overlay fabricated by cold metal transfer process. Int J Hydrogen Energy 47(67):29113–29130. https://doi.org/10.1016/j.ijhydene.2022.06.210

    Article  CAS  Google Scholar 

  13. Mortazavi E, Najafabadi RA, Meysami A (2017) Effect of heat input on microstructure and mechanical properties of dissimilar joints of AISI 316L steel and API X70 high-strength low-alloy steel. J Iron Steel Res Int 24(12):1248–1253. https://doi.org/10.1016/s1006-706x(18)30024-4

    Article  Google Scholar 

  14. Chu Q, Xu S, Tong X et al (2020) Comparative study of microstructure and mechanical properties of X80 SAW welds prepared using different wires and heat inputs. J Mater Eng Perform 29:4322–4338. https://doi.org/10.1007/s11665-020-04986-5

    Article  CAS  Google Scholar 

  15. Zhang Y, Dong LJ, Li H et al (2023) Insights into the role of partially mixed zones in sulfide stress corrosion cracking of the inconel 625/X80 weld overlay. Int J Hydrogen Energy 48(73):28583–28600. https://doi.org/10.1016/j.ijhydene.2023.04.061

    Article  CAS  Google Scholar 

  16. Zhou C, Huang Q, Guo Q et al (2016) Sulphide stress cracking behaviour of the dissimilar metal welded joint of X60 pipeline steel and Inconel 625 alloy. Corros Sci 110:242–252. https://doi.org/10.1016/j.corsci.2016.04.044

    Article  CAS  Google Scholar 

  17. Dai T, Thodla R, Kovacs W et al (2019) Effect of postweld heat treatment on the sulfide stress cracking of dissimilar welds of nickel-based alloy 625 on steels. Corrosion 75(6):641–656. https://doi.org/10.5006/3081

    Article  CAS  Google Scholar 

  18. Passos A, Farias F, Oliveira V et al (2021) Sulfide stress cracking susceptibility of the heat-affected zone of an 9% Ni steel welded joint. Constr Build Mater 282:122573. https://doi.org/10.1016/j.conbuildmat.2021.122573

    Article  CAS  Google Scholar 

  19. Zhou C, Ye B, Song Y et al (2019) Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel. Int J Hydrogen Energy 44(40):22547–22558. https://doi.org/10.1016/j.ijhydene.2019.04.239

    Article  CAS  Google Scholar 

  20. Park GT, Koh SU, Jung HG et al (2008) Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel. Corros Sci 50(7):1865–1871. https://doi.org/10.1016/j.corsci.2008.03.007

    Article  CAS  Google Scholar 

  21. Wu W, Liu Z, Li X et al (2019) Influence of different heat-affected zone microstructures on the stress corrosion behavior and mechanism of high-strength low-alloy steel in a sulfurated marine atmosphere. Mater Sci Eng, A 759:124–141. https://doi.org/10.1016/j.msea.2019.05.024

    Article  CAS  Google Scholar 

  22. Gangloff RP, Somerday BP (2011) Gaseous hydrogen embrittlement of materials in energy technologies: Volume 1—The problem, its characterisation and effects on particular alloy classes. Woodhead Publishing Ltd., Sawston, UK

    Google Scholar 

  23. Zhao MC, Liu M, Atrens A et al (2008) Effect of applied stress and microstructure on sulfide stress cracking resistance of pipeline steels subject to hydrogen sulfide. Mater Sci Eng, A 478(1–2):43–47. https://doi.org/10.1016/j.msea.2007.05.067

    Article  CAS  Google Scholar 

  24. Huang F, Liu S, Liu J et al (2014) Sulfide stress cracking resistance of the welded WDL690D HSLA steel in H2S environment. Mater Sci Eng, A 591:159–166. https://doi.org/10.1016/j.msea.2013.10.081

    Article  CAS  Google Scholar 

  25. De Jesus Jorge L, Cândido VS, Da Silva ACR et al (2018) Mechanical properties and microstructure of SMAW welded and thermically treated HSLA-80 steel. J Mater Res Technol 7(4):598–605. https://doi.org/10.1016/j.jmrt.2018.08.007

    Article  CAS  Google Scholar 

  26. Xu K, Qiao G, Shi X et al (2021) Effect of stress-relief annealing on the fatigue properties of X80 welded pipes. Mater Sci Eng, A 807:140854. https://doi.org/10.1016/j.msea.2021.140854

    Article  CAS  Google Scholar 

  27. Wang X, Wang D, Dai L et al (2022) Effect of post-weld heat treatment on microstructure and fracture toughness of X80 pipeline steel welded joint. Materials 15(19):6646. https://doi.org/10.3390/ma15196646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buzzatti DT, Kanan LF, Dalpiaz G et al (2022) Effect of heat input and heat treatment on the microstructure and toughness of pipeline girth friction welded API 5L X65 steel. Mater Sci Eng, A 833:142588. https://doi.org/10.1016/j.msea.2021.142588

    Article  CAS  Google Scholar 

  29. Morales EV, Betancourt G, Fernandes JR et al (2022) Hardening mechanisms in a high wall thickness sour service pipe steel API 5L X65 before and after post-welding heat treatments. Mater Sci Eng, A 851:143612. https://doi.org/10.1016/j.msea.2022.143612

    Article  CAS  Google Scholar 

  30. Fenske JA, Robertson IM, Ayer R et al (2012) Microstructure and hydrogen-induced failure mechanisms in Fe and Ni alloy weldments. Metall and Mater Trans A 43:3011–3022. https://doi.org/10.1007/s11661-012-1129-1

    Article  CAS  Google Scholar 

  31. Dodge MF, Dong HB, Milititsky M et al (2013) Environment-induced cracking in weld joints in subsea oil and gas systems: Part II. Int Conf Offshore Mech Arctic Eng. Am Soc Mech Eng 55355:V003T03A011. https://doi.org/10.1115/OMAE2013-10339

    Article  Google Scholar 

  32. Dong LJ, Peng Q, Han EH et al (2018) Microstructure and intergranular stress corrosion cracking susceptibility of a SA508-52M-316L dissimilar metal weld joint in primary water. J Mater Sci Technol 34(8):1281–1292. https://doi.org/10.1016/j.jmst.2017.11.051

    Article  CAS  Google Scholar 

  33. Dong LJ, Peng QJ, Xue H et al (2018) Correlation of microstructure and stress corrosion cracking initiation behaviour of the fusion boundary region in a SA508 Cl. 3-Alloy 52M dissimilar weld joint in primary pressurized water reactor environment. Corros Sci 132:9–20. https://doi.org/10.1016/j.corsci.2017.12.011

    Article  CAS  Google Scholar 

  34. Dong LJ, Zhang Y, Han Y et al (2021) Environmentally assisted cracking in the fusion boundary region of a SA508-Alloy 52M dissimilar weld joint in simulated primary pressurized water reactor environments. Corros Sci 190:109668. https://doi.org/10.1016/j.corsci.2021.109668

    Article  CAS  Google Scholar 

  35. Hodgson DK, Dai T, Lippold JC (2015) Transformation and tempering behavior of the heat-affected zone of 2.25 Cr-1Mo steel. Weld J 94(8):250s–256s

    Google Scholar 

  36. Dai T, Lippold JC (2018) Tempering effect on the fusion boundary region of alloy 625 weld overlay on 8630 steel. Weld World 62:535–550. https://doi.org/10.1007/s40194-018-0560-3

    Article  CAS  Google Scholar 

  37. Dai T, Lippold JC (2017) Tempering behavior of the fusion boundary region of an F22/625 weld overlay. Weld J 96(12):467s–480s

    Google Scholar 

  38. Dai T, Lippold JC (2018) The effect of postweld heat treatment on hydrogen-assisted cracking of f22/625 overlays. Weld J 97(3):75S-90S. https://doi.org/10.29391/2018.97.007

    Article  CAS  Google Scholar 

  39. Sedighi M, Shajari Y, Razavi SH et al (2021) The effect of post weld heat treatment (PWHT) on the microstructure, microhardness and sulphide stress corrosion cracking (SSCC) of Ni-base superalloy IN625 hot wire tig cladding on AISI 4130 Steel. Prot Met Phys Chem Surf 57:113–120. https://doi.org/10.1134/S2070205120060210

    Article  CAS  Google Scholar 

  40. Thomas A, Szpunar JA (2020) Hydrogen diffusion and trapping in X70 pipeline steel. Int J Hydrogen Energy 45(3):2390–2404. https://doi.org/10.1016/j.ijhydene.2019.11.096

    Article  CAS  Google Scholar 

  41. Momotani Y, Shibata A, Terada D et al (2017) Effect of strain rate on hydrogen embrittlement in low-carbon martensitic steel. Int J Hydrogen Energy 42(5):3371–3379. https://doi.org/10.1016/j.ijhydene.2016.09.188

    Article  CAS  Google Scholar 

  42. Han C, Liu Q, Cai Z et al (2022) Effect of solidification segregation on microstructure and mechanical properties of a Ni-Cr-Mo-V steel weld metal. Metall and Mater Trans A 53(4):1394–1406. https://doi.org/10.1007/s11661-022-06600-w

    Article  CAS  Google Scholar 

  43. Frei J, Alexandrov BT, Rethmeier M (2019) Low heat input gas metal arc welding for dissimilar metal weld overlays part III: hydrogen-assisted cracking susceptibility. Weld World 63:591–598. https://doi.org/10.1007/s40194-018-0674-7

    Article  CAS  Google Scholar 

  44. Bourgeois D, Alexandrov B (2022) Ranking the susceptibility to hydrogen-assisted cracking in dissimilar metal welds. Weld World 66(8):1535–1550. https://doi.org/10.1007/s40194-022-01308-2

    Article  Google Scholar 

  45. Dai T (2018) Effect of postweld heat treatment on the properties of steel clad with alloy 625 for petrochemical applications. The Ohio State University, PhD thesis

  46. Han XL, Wu DY, Min XL et al (2016) Influence of post-weld heat treatment on the microstructure, microhardness, and toughness of a weld metal for hot bend. Metals 6(4):75. https://doi.org/10.3390/met6040075

    Article  Google Scholar 

  47. Jiang W, Ye D, Li J et al (2014) Reverse transformation mechanism of martensite to austenite in 00Cr15Ni7Mo2WCu2 super martensitic stainless steel. Steel Res Int 85(7):1150–1157. https://doi.org/10.1002/srin.201300264

    Article  CAS  Google Scholar 

  48. Sinha PP, Sivakumar D, Babu NS et al (1995) Austenite reversion in 18 Ni Co-free maraging steel. Steel Res 66(11):490–494. https://doi.org/10.1002/srin.199501160

    Article  CAS  Google Scholar 

  49. Huang CJ, Browne DJ, McFadden S (2006) A phase-field simulation of austenite to ferrite transformation kinetics in low carbon steels. Acta Mater 54(1):11–21. https://doi.org/10.1016/j.actamat.2005.08.033

    Article  CAS  Google Scholar 

  50. Nakada N, Mizutani K, Tsuchiyama T et al (2014) Difference in transformation behavior between ferrite and austenite formations in medium manganese steel. Acta Mater 65:251–258. https://doi.org/10.1016/j.actamat.2013.10.067

    Article  CAS  Google Scholar 

  51. Bian B, Taheriniya S, Muralikrishna GM et al (2024) Coupling of alloy chemistry, diffusion and structure by grain boundary engineering in Ni–Cr–Fe. Acta Mater 264:119602. https://doi.org/10.1016/j.actamat.2023.119602

    Article  CAS  Google Scholar 

  52. Ayer R, Mueller RR, Leta DP et al (1989) Phase transformations at steel/IN626 clad interfaces. Metall Trans A 20:665–681. https://doi.org/10.1007/bf02667584

    Article  Google Scholar 

  53. Zhang J, Dai Z, Zeng L et al (2021) Revealing carbide precipitation effects and their mechanisms during quenching-partitioning-tempering of a high carbon steel: experiments and modeling. Acta Mater 217:117176. https://doi.org/10.1016/j.actamat.2021.117176

    Article  CAS  Google Scholar 

  54. Zhao M, Wu H, Zhang B et al (2023) Effect of Cr-rich carbide precipitates on austenite stability and consequent corrosion behavior of ultrafine-grained 304 stainless steel produced by cryogenic rolling and annealing treatment. Mater Charact 195:112553. https://doi.org/10.1016/j.matchar.2022.112553

    Article  CAS  Google Scholar 

  55. Capelle J, Gilgert J, Dmytrakh I et al (2008) Sensitivity of pipelines with steel API X52 to hydrogen embrittlement. Int J Hydrogen Energy 33(24):7630–7641. https://doi.org/10.1016/j.ijhydene.2008.09.020

    Article  CAS  Google Scholar 

  56. Shen Z, Zhang J, Wu S et al (2022) Microstructure understanding of high Cr-Ni austenitic steel corrosion in high-temperature steam. Acta Mater 226:117634. https://doi.org/10.1016/j.actamat.2022.117634

    Article  CAS  Google Scholar 

  57. Hu Y, Wu S, Withers PJ et al (2021) Corrosion fatigue lifetime assessment of high-speed railway axle EA4T steel with artificial scratch. Eng Fract Mech 245:107588. https://doi.org/10.1016/j.engfracmech.2021.107588

    Article  Google Scholar 

  58. Symons DM, Young GA, Scully JR (2001) The effect of strain on the trapping of hydrogen at grain-boundary carbides in Ni-Cr-Fe alloys. Metall and Mater Trans A 32:369–377. https://doi.org/10.1007/s11661-001-0268-6

    Article  Google Scholar 

  59. Regina JR, Dupont JN, Marder AR (2007) The effect of chromium on the weldability and microstructure of Fe-Cr-Al weld cladding. Weld J 86(6):170–178

    Google Scholar 

  60. Martiniano GA, Leal JES, Rosa GS et al (2021) Effect of specific microstructures on hydrogen embrittlement susceptibility of a modified AISI 4130 steel. Int J Hydrogen Energy 46(73):36539–36556. https://doi.org/10.1016/j.ijhydene.2021.08.147

    Article  CAS  Google Scholar 

  61. Ramirez MFG, Hernández JWC, Ladino DH et al (2021) Effects of different cooling rates on the microstructure, crystallographic features, and hydrogen induced cracking of API X80 pipeline steel. J Market Res 14:1848–1861. https://doi.org/10.1016/j.jmrt.2021.07.060

    Article  CAS  Google Scholar 

  62. Cui X, Zhang S, Wang C et al (2020) Effects of stress-relief heat treatment on the microstructure and fatigue property of a laser additive manufactured 12CrNi2 low alloy steel. Mater Sci Eng, A 791:139738. https://doi.org/10.1016/j.msea.2020.139738

    Article  CAS  Google Scholar 

  63. Ospina-Correa JD, Olaya-Muñoz DA, Toro-Castrillón JJ et al (2021) Grain polydispersity and coherent crystal reorientations are features to foster stress hotspots in polycrystalline alloys under load. Sci Adv 7(15):eabe3890. https://doi.org/10.1126/sciadv.abe3890

    Article  PubMed  PubMed Central  Google Scholar 

  64. Maresca F, Curtin WA (2017) The austenite/lath martensite interface in steels: structure, athermal motion, and in-situ transformation strain revealed by simulation and theory. Acta Mater 134:302–323. https://doi.org/10.1016/j.actamat.2017.05.044

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 52001264)

Author information

Authors and Affiliations

Authors

Contributions

Lijin Dong: conceptualization, methodology, data curation, funding acquisition, writing—original draft. Guiyu Wu: writing—original draft, investigation; Yan Zhang: investigation; Zhenyan Shi: investigation; Shidong Wang: supervision; Qinying Wang: supervision, funding acquisition; Li Liu: validation: supervision.

Corresponding author

Correspondence to Lijin Dong.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Zhao Shen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Wu, G., Zhang, Y. et al. Improvement of sulfide stress corrosion cracking resistance of the Inconel 625/X80 weld overlay by post-weld heat treatment. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09731-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09731-0

Navigation