Skip to main content

Advertisement

Log in

Comparative Study of Microstructure and Mechanical Properties of X80 SAW Welds Prepared Using Different Wires and Heat Inputs

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present work investigated the effect of weld composition and welding heat input on the microstructure and mechanical properties of two submerged arc welded (SAW) joints of API 5L-X80 pipeline steel. The weld metals were joined by two welding consumables (one is rich in C, Ni, Cr, Mo) under different welding heat inputs (20-22 and 34-36 kJ/cm for single-wire and triple-wire processes, respectively). The triple-wire welding procedure with less C, Ni, Cr, Mo alloy contents favors the formation of acicular ferrite (AF), whereas single-wire welding procedure with increased C, Ni, Cr, Mo contents promotes the formation of lath bainite (LB). Nanoindentation is used to evaluate the property of different microstructures. The hardness of lath bainite (LB), granular bainite (GB) and acicular ferrite (AF) is 8.0 GPa, 5.8 GPa and 3.0 GPa, respectively. The Charpy impact energy of weld metal with triple-wire welding procedure (136-165 J) is much greater than that with single-wire welding procedure (15-44 J) at − 45 °C. Larger cleavage facet size is observed in the fracture surface of single-wire weld metal. A computational procedure is developed to understand the temperature fields during the triple-wire welding. Combining the experiments and numerical simulation, simple models to predict the microstructure evolution through the weld thickness are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons. The processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations. The processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. S. Vervynckt, K. Verbeken, B. Lopez, and J.J. Jonas, Modern HSLA Steels and Role of Non-recrystallisation Temperature, Int. Mater. Rev., 2012, 57, p 187–207

    Article  CAS  Google Scholar 

  2. J.C. Villalobos, A. Del-Pozo, B. Campillo, J. Mayen, and S. Serna, Microalloyed Steels Through History Until 2018: Review of Chemical Composition, Processing and Hydrogen Service, Metals, 2018, 8, p 1–49

    Article  Google Scholar 

  3. W.W. Bose-Filho, A.L.M. Garvalho, and M. Strangwood, Effects of Alloying Elements on the Microstructure and Inclusion Formation in HSLA Multipass Welds, Mater. Charact., 2007, 58, p 29–39

    Article  CAS  Google Scholar 

  4. J.H. Kong, L. Zhen, B. Guo, P.H. Li, A.H. Wang, and C.S. Xie, Influence of Mo Content on Microstructure and Mechanical Properties of High Strength Pipeline Steel, Mater. Des., 2004, 25, p 723–728

    Article  CAS  Google Scholar 

  5. M.C. Zhao and K. Yang, Strengthening and Improvement of Sulfide Stress Cracking Resistance in Acicular Ferrite Pipeline Steels by Nano-sized Carbonitrides, Scr. Mater., 2005, 52, p 881–886

    Article  CAS  Google Scholar 

  6. R.A. Farrar and P.L. Harrison, Acicular Ferrite in Carbon-Manganese Weld Metals: An Overview, J. Mater. Sci., 1987, 22, p 3812–3820

    Article  CAS  Google Scholar 

  7. B. Beidokhti, A.H. Koukabi, and A. Dolati, Effect of Titanium Addition on the Microstructure and Inclusion Formation in Submerged Arc Welded HSLA Pipeline Steel, J. Mater. Process. Technol., 2009, 209, p 4027–4035

    Article  CAS  Google Scholar 

  8. S.D. Bhole, J.B. Nemade, L. Collins, and C. Liu, Effect of Nickel and Molybdenum Additions on Weld Metal Toughness in a Submerged Arc Welded HSLA Line-Pipe Steel, J. Mater. Process. Technol., 2006, 173, p 92–100

    Article  CAS  Google Scholar 

  9. A.R.H. Midawi, E.B.F. Santos, N. Huda, A.K. Sinha, R. Lazor, and A.P. Gerlich, Microstructures and Mechanical Properties in Two X80 Weld Metals Produced Using Similar Heat Input, J. Mater. Process. Technol., 2015, 226, p 272–279

    Article  CAS  Google Scholar 

  10. B. Beidokhti, A.H. Koukabi, and A. Dolati, Influence of Titanium and Manganese on High Strength Low Alloy SAW Weld Metal Properties, Mater. Charact., 2009, 60, p 225–233

    Article  CAS  Google Scholar 

  11. J. Hu, L.X. Du, and J.J. Wang, Effect of Cooling Procedure on Microstructures and Mechanical Properties of Hot Rolled Nb-Ti Bainitic High Strength Steel, Mater. Sci. Eng. A, 2012, 554, p 79–85

    Article  CAS  Google Scholar 

  12. K.W. Andrews, Empirical Formulae for the Calculation of Some Transformation Temperatures, J. Iron Steel Inst., 1965, 203, p 721–727

    CAS  Google Scholar 

  13. N. Huda, A.R.H. Midawi, J. Gianetto, R. Lazor, and A.P. Gerlich, Influence of Martensite-Austenite (MA) on Impact Toughness of X80 Line Pipe Steels, Mater. Sci. Eng. A, 2016, 662, p 481–491

    Article  CAS  Google Scholar 

  14. C.Y. Yan, C.Y. Liu, and B. Yan, 3D Modeling of the Hydrogen Distribution in X80 Pipeline Steel Welded Joints, Comput. Mater. Sci., 2014, 83, p 158–163

    Article  CAS  Google Scholar 

  15. B. Brickstad and B.L. Josefson, A Parametric Study of Residual Stresses in Multi-pass Butt-Welded Stainless Steel Pipes, Int. J. Pres. Ves. Pip., 1998, 75, p 11–25

    Article  CAS  Google Scholar 

  16. M. Mohammadijoo, J. Valloton, L. Collins, H. Henein, and D.G. Ivey, Characterization of Martensite-Austenite Constituents and Micro-hardness in Intercritical Reheated and Coarse-Grained Heat Affected Zones of API, X70 HSLA Steel, Mater. Charact., 2018, 142, p 321–331

    Article  CAS  Google Scholar 

  17. P. Mohseni, J.K. Solberg, M. Karlsen, O.M. Akselsen, and E. Østby, Cleavage Fracture Initiation at M-A Constituents in Intercritically Coarse-Grained Heat-Affected Zone of a HSLA Steel, Metall. Mater. Trans. A, 2014, 45, p 384–394

    Article  CAS  Google Scholar 

  18. Z.X. Zhu, J. Han, H.J. Li, and C. Lu, High Temperature Processed High Nb X80 Steel with Excellent Heat-Affected Zone Toughness, Mater. Lett., 2016, 163, p 171–174

    Article  CAS  Google Scholar 

  19. W.G. Zhao, W. Wang, S.H. Chen, and J.B. Qu, Effect of Simulated Welding Thermal Cycle on Microstructure and Mechanical Properties of X90 Pipeline Steel, Mater. Sci. Eng. A, 2011, 528, p 7417–7422

    Article  CAS  Google Scholar 

  20. S.S. Babu, The Mechanism of Acicular Ferrite in Weld Deposits, Curr. Opin. Solid State Mater. Sci., 2004, 8, p 267–278

    Article  CAS  Google Scholar 

  21. A. Lambert-Perlade, A.F. Gourgues, and A. Pineau, Austenite to Bainite Phase Transformation in the Heat-Affected Zone of a High Strength Low Alloy Steel, Acta Mater., 2004, 52, p 2337–2348

    Article  CAS  Google Scholar 

  22. A. Lambert-Perlade, A.F. Gourgues, J. Besson, T. Sturel, and A. Pineau, Mechanisms and Modeling of Cleavage Fracture in Simulated Heat-Affected Zone Microstructures of a High-Strength Low Alloy Steel, Metall. Mater. Trans. A, 2004, 35A, p 1039–1053

    Article  CAS  Google Scholar 

  23. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic Features of Lath Martensite in Low-Carbon Steel, Acta Mater., 2006, 54, p 1279–1288

    Article  CAS  Google Scholar 

  24. Y. Li, D.N. Crowther, M.J.W. Green, P.S. Mitchell, and T.N. Baker, The Effect of Vanadium and Niobium on the Properties and Microstructure of the Intercritically Reheated Coarse Grained Heat Affected Zone in Low Carbon Microalloyed Steels, ISIJ Int., 2001, 41, p 46–55

    Article  CAS  Google Scholar 

  25. C.M. Wang, X.F. Wu, J. Liu, and N.A. Xu, Transmission electron microscopy of martensite/austenite islands in pipeline steel X70, Mater. Sci. Eng. A, 2006, 438-440, p 267–271

    Article  Google Scholar 

  26. D.P. Fairchild, N.V. Bangaru, J.Y. Koo, P.L. Harrison, and A. Ozekcin, A Study Concerning Intercritical HAZ Microstructure and Toughness in HSLA Steels, Weld. J., 1991, 70, p 321s–329s

    Google Scholar 

  27. S. Moeinifar, A.H. Kokabi, and H.R. Madaah-Hosseini, Influence of peak temperature during simulation and real thermal cycles on microstructure and fracture properties of the reheated zones, Mater. Des., 2010, 31(6), p 2948–2955

    Article  CAS  Google Scholar 

  28. P. Mohseni, J.K. Solberg, M. Karlsen, O.M. Akselsen, and E. Østby, Investigation of Mechanism of Cleavage Fracture Initiation in Intercritically Coarse Grained Heat Affected Zone of HSLA Steel, Mater. Sci. Technol., 2012, 28, p 1261–1268

    Article  CAS  Google Scholar 

  29. L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, and L.X. Du, Microstructural Characteristics and Toughness of the Simulated Coarse Grained Heat Affected Zone of High Strength Low Carbon Bainitic Steel, Mater. Sci. Eng. A, 2011, 529, p 192–200

    Article  CAS  Google Scholar 

  30. A. Lambert, X. Garat, T. Sturel, A.F. Gourgues, and A. Gingell, Application of Acoustic Emission to the Study of Cleavage Fracture Mechanism in a HSLA Steel, Scr. Mater., 2000, 43, p 161–166

    Article  CAS  Google Scholar 

  31. J. Hu, L.X. Du, J.J. Wang, and C.R. Gao, Effect of Welding Heat Input on Microstructures and Toughness in Simulated CGHAZ of V-N High Strength Steel, Mater. Sci. Eng. A, 2013, 577, p 161–168

    Article  CAS  Google Scholar 

  32. J. Hu, L.X. Du, J.J. Wang, H. Xie, C.R. Gao, and R.D.K. Misra, High Toughness in the Intercritically Reheated Coarse-Grained (ICRCG) Heat-Affected Zone (HAZ) of Low Carbon Microalloyed Steel, Mater. Sci. Eng. A, 2014, 590, p 323–328

    Article  CAS  Google Scholar 

  33. M.I. Onsøien, S. Liu, and D.L. Olson, Shielding Gas Oxygen Equivalent in Weld Metal Microstructure Optimization, Weld. J., 1996, 75, p 216s

    Google Scholar 

  34. Y. Shao, C.X. Liu, Z.S. Yan, H.J. Li, and Y.C. Liu, Formation Mechanism and Control Methods of Acicular Ferrite in HSLA Steels: A Review, J. Mater. Sci. Technol., 2018, 34, p 737–744

    Article  Google Scholar 

  35. Z.X. Zhu, L. Kuzmikova, H.J. Li, and F. Barbaro, Effect of Inter-critically Reheating Temperature on Microstructure and Properties of Simulated Inter-critically Reheated Coarse Grained Heat-Affected Zone in X70 Steel, Mater. Sci. Eng. A, 2014, 605, p 8–13

    Article  CAS  Google Scholar 

  36. Ö. Üstündağ, S. Gook, A. Gumenyuk, and M. Rethmeier, Hybrid Laser Arc Welding of Thick High-Strength Pipeline Steels of Grade X120 with Adapted Heat Input, J. Mater. Process. Technol., 2020, 275, p 16358

    Article  Google Scholar 

  37. S. Kou, Welding Metallurgy, Wiley, Hoboken, NJ, 2003

    Google Scholar 

  38. E. Surian, M.R. De Rissone, and L. De Vedia, Influence of Molybdenum on Ferrite High-Strength SMAW All-Weld-Metal Properties, Weld. J., 2005, 84, p 53–62

    Google Scholar 

  39. H.I. McHenry and R.P. Reed, Fracture Behavior of the Heat-Affected Zone in 5% Ni Steel Weldments, Weld. J., 1977, 58, p 104–111

    Google Scholar 

  40. N.N. Rykalin, Calculation of Heat Processes in Welding, U.S.S.R, Moscow, 1960

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 51904243), Natural Science Foundation of Shaanxi Provincial Department (No. 2019JQ-284, 2019JZ-31), Postdoctoral Science Foundation of China (No. 2019M653704) and Australian Research Council Discovery Project (DP180101955).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiaoling Chu or Min Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, Q., Xu, S., Tong, X. et al. Comparative Study of Microstructure and Mechanical Properties of X80 SAW Welds Prepared Using Different Wires and Heat Inputs. J. of Materi Eng and Perform 29, 4322–4338 (2020). https://doi.org/10.1007/s11665-020-04986-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04986-5

Keywords

Navigation