Skip to main content
Log in

Revealing the potential of graphene-embedded Na3Fe2(PO4)3 for enhanced sodium-ion battery performance

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, pure sodium iron phosphate [Na3Fe2(PO4)3, abbreviated NFP] and graphene-embedded sodium iron phosphate [Na3Fe2(PO4)3/graphene, abbreviated NFP/G] were effectively produced through a facile sol–gel method followed by physicochemical and electrochemical characterization for sodium-ion batteries. The resulting NFP nanoplates exhibited an even distribution and firm attachment to the graphene sheets of the NFP/G nanocomposite. The nanocomposite displayed superior sodium storage capacity, achieving 115.1 mAh g−1 at a 0.1 C rate, closely approximating the theoretical capacity of pure NFP. As a SIBs cathode, NFP/G stands out for its exceptionally long cycle life and high capacity. It surpasses the capacity of pure NFP, and its derivatives studied at these charge/discharge rates, delivering high capacities of 103.7 mAh g−1 (96.4%) and 86.8 mAh g−1 (93.7%) after 50 and 500 cycles at 0.5 C and 1 C, respectively. The interaction between the NFP nanoplates evenly distributed on the graphene sheets established active sites, promoting the fast and efficient diffusion of sodium ions, leading to reduced diffusion lengths and enhanced electronic conductivity. These results emphasize the promising potential of these nanocomposites for sodium-ion energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The data presented in this study are available from the corresponding author upon reasonable request.

References

  1. Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287–3295. https://doi.org/10.1039/c1ee01388b

    Article  CAS  Google Scholar 

  2. Tarascon J-M (2010) Is lithium the new gold? Nat Chem 2:510–510. https://doi.org/10.1038/nchem.680

    Article  CAS  PubMed  Google Scholar 

  3. Larcher D, Tarascon J-M (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29. https://doi.org/10.1038/nchem.2085

    Article  CAS  PubMed  Google Scholar 

  4. Kanwade A, Gupta S, Kankane A et al (2022) Correction: transition metal oxides as a cathode for indispensable Na-ion batteries. RSC Adv 12:24478–24479. https://doi.org/10.1039/D2RA90080G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lichchhavi, Kanwade A, Shirage PM (2022) A review on synergy of transition metal oxide nanostructured materials: effective and coherent choice for supercapacitor electrodes. J Energy Storage 55:105692–105715. https://doi.org/10.1016/j.est.2022.105692

    Article  Google Scholar 

  6. Boddu VRR, Puthusseri D, Shirage PM et al (2021) Layered NaxCoO2-based cathodes for advanced Na-ion batteries: review on challenges and advancements. Ionics 27:4549–4572. https://doi.org/10.1007/s11581-021-04265-w

    Article  CAS  Google Scholar 

  7. Palanisamy M, Reddy Boddu VR, Shirage PM, Pol VG (2021) Discharge state of layered P2-type cathode reveals unsafe than charge condition in thermal runaway event for sodium-ion batteries. ACS Appl Mater Interfaces 13:31594–31604. https://doi.org/10.1021/acsami.1c04482

    Article  CAS  PubMed  Google Scholar 

  8. Jena AKS, Kanwade A, Srivastava A et al (2023) Experimental and computational advancement of cathode materials for futuristic sodium ion batteries. Mater Today. https://doi.org/10.1016/j.mattod.2023.06.013

    Article  Google Scholar 

  9. Kanwade A, Gupta S, Kankane A et al (2022) Phosphate-based cathode materials to boost the electrochemical performance of sodium-ion batteries. Sustain Energy Fuels 6:3114–3147. https://doi.org/10.1039/d2se00475e

    Article  CAS  Google Scholar 

  10. Srivastava A, Jena AKS, Tiwari MK et al (2023) Lead metal halide perovskite solar cells: fabrication, advancement strategies, alternatives, and future perspectives. Mater Today Commun 35:105686–105721. https://doi.org/10.1016/j.mtcomm.2023.105686

    Article  CAS  Google Scholar 

  11. Yadav SC, Tiwari MK, Kanwade A et al (2023) Butea monosperma, crown of thorns, red lantana camara and royal poinciana flowers extract as natural dyes for dye sensitized solar cells with improved efficiency. Electrochim Acta 441:141793–141802. https://doi.org/10.1016/j.electacta.2022.141793

    Article  CAS  Google Scholar 

  12. Srivastava A, Satrughna JAK, Tiwari MK et al (2023) Effect of Ti1−xFexO2 photoanodes on the performance of dye-sensitized solar cells utilizing natural betalain pigments extracted from Beta vulgaris (BV). Energy Adv 2:148–160. https://doi.org/10.1039/D2YA00197G

    Article  CAS  Google Scholar 

  13. Teja AS, Srivastava A, Jena AKS et al (2023) Optimal processing methodology for futuristic natural dye-sensitized solar cells and novel applications. Dye Pigment 210:110997–111016. https://doi.org/10.1016/j.dyepig.2022.110997

    Article  CAS  Google Scholar 

  14. Srivastava A, Singh Chauhan B, Yadav SC et al (2022) Performance of dye-sensitized solar cells by utilizing Codiaeum variegatum leaf and Delonix regia flower as natural sensitizers. Chem Phys Lett 807:140087–140094. https://doi.org/10.1016/j.cplett.2022.140087

    Article  CAS  Google Scholar 

  15. Yadav SC, Srivastava A, Manjunath V et al (2022) Properties, performance and multidimensional applications of stable lead-free Cs2AgBiBr 6 double perovskite. Mater Today Phys 26:100731–100753. https://doi.org/10.1016/j.mtphys.2022.100731

    Article  CAS  Google Scholar 

  16. Kachere AR, Kakade PM, Kanwade AR et al (2022) Zinc oxide/graphene oxide nanocomposites: synthesis, characterization and their optical properties. ES Mater. Manuf. 16:19–29. https://doi.org/10.30919/esmm5f516

    Article  CAS  Google Scholar 

  17. Yadav SC, Sharma A, Devan RS, Shirage PM (2022) Role of different counter electrodes on performance of TiO2 based dye-sensitized solar cell (DSSC) fabricated with dye extracted from Hibiscus sabdariffa as sensitizer. Opt Mater 124:112066–112074. https://doi.org/10.1016/j.optmat.2022.112066

    Article  CAS  Google Scholar 

  18. Tiwari MK, Yadav SC, Srivastava A et al (2022) Enhancement of CO gas sensing performance by Mn-doped porous ZnSnO3 microspheres. RSC Adv 12:32249–32261. https://doi.org/10.1039/D2RA06785D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kumar Y, Rana AK, Shirage PM et al (2015) Controlling of ZnO nanostructures by solute concentration and its effect on growth, structural and optical properties. Mater Res Express 2:105017–105027. https://doi.org/10.1088/2053-1591/2/10/105017 

    Article  CAS  Google Scholar 

  20. Tiwari MK, Kanwade A, Yadav SC et al (2023) NASICON-type Na3Fe2(PO4)3 material for an excellent room temperature CO sensor. J Mater Chem C 11:5469–5480. https://doi.org/10.1039/D3TC00300K

    Article  CAS  Google Scholar 

  21. Kim H, Park I, Lee S et al (2013) Understanding the electrochemical mechanism of the new iron-based mixed-phosphate Na4Fe3(PO4)2(P2O7) in a na rechargeable battery. Chem Mater 25:3614–3622. https://doi.org/10.1021/cm4013816

    Article  CAS  Google Scholar 

  22. Zhu Y, Xu Y, Liu Y et al (2013) Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 5:780–787. https://doi.org/10.1039/C2NR32758A

    Article  CAS  PubMed  Google Scholar 

  23. Chen X, Du K, Lai Y et al (2017) In situ carbon-coated Na2FeP2O7 anchored in three-dimensional reduced graphene oxide framework as a durable and high-rate sodium-ion battery cathode. J Power Sources 357:164–172. https://doi.org/10.1016/j.jpowsour.2017.04.075

    Article  CAS  Google Scholar 

  24. Heubner C, Heiden S, Matthey B et al (2016) Sodiation vs. Lithiation of FePO4: a comparative kinetic study. Electrochim Acta 216:412–419. https://doi.org/10.1016/j.electacta.2016.09.041

    Article  CAS  Google Scholar 

  25. Heubner C, Heiden S, Schneider M, Michaelis A (2017) In situ preparation and electrochemical characterization of submicron sized NaFePO4 cathode material for sodium-ion batteries. Electrochim Acta 233:78–84. https://doi.org/10.1016/j.electacta.2017.02.107

    Article  CAS  Google Scholar 

  26. Zhu Y, Xu Y, Liu Y, Luo C, Wang C (2013) Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 5:780–787. https://doi.org/10.1039/C2NR32758A

    Article  CAS  PubMed  Google Scholar 

  27. Ellis BL, Michael Makahnouk WR, Rowan-Weetaluktuk WN, Ryan DH, Nazar LF (2010) Crystal structure and electrochemical properties of A2MPO4F fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni). Chem Mater 22:1059–1070. https://doi.org/10.1021/cm902023h

    Article  CAS  Google Scholar 

  28. Ko JS, Doan-Nguyen VVT, Kim HS et al (2017) High-rate capability of Na2FePO4F nanoparticles by enhancing surface carbon functionality for Na-Ion batteries. J Mater Chem A 5:18707–18715. https://doi.org/10.1039/C7TA05680J

    Article  CAS  Google Scholar 

  29. Barpanda P, Liu G, Ling CD et al (2013) Na2FeP2O7: a safe cathode for rechargeable sodium-ion batteries. Chem Mater 25(17):3480–3487. https://doi.org/10.1021/cm401657c

    Article  CAS  Google Scholar 

  30. Xiao H, Huang X, Ren Y et al (2018) Enhanced sodium ion storage performance of Na3V2(PO4)3 with N-doped carbon by folic acid as carbon-nitrogen source. J Alloys Compd 732:454–459. https://doi.org/10.1016/j.jallcom.2017.10.195

    Article  CAS  Google Scholar 

  31. Zhang J, Fang Y, Xiao L et al (2017) Graphene-scaffolded Na3V2(PO4)3 microsphere cathode with high rate capability and cycling stability for sodium ion batteries. ACS Appl Mater Interfaces 9:7177–7184. https://doi.org/10.1021/acsami.6b16000

    Article  CAS  PubMed  Google Scholar 

  32. Pu X, Wang H, Yuan T et al (2019) Na4Fe3(PO4)2P2O7/C nanospheres as low-cost, high-performance cathode material for sodium-ion batteries. Energy Storage Mater 22:330–336. https://doi.org/10.1016/j.ensm.2019.02.017

    Article  Google Scholar 

  33. Lyubutin IS, Melnikov OK, Sigaryov SE, Terziev VG (1988) Phase transitions in Na3Fe2(PO4)3: an inside view. Solid State Ionics 31:197–201. https://doi.org/10.1016/0167-2738(88)90268-8

    Article  CAS  Google Scholar 

  34. Kravchenko VV, Sigaryov SE (1992) Structural features of the superionic phase transitions in Na3Fe2(PO4)3. Solid State Commun 83:149–152. https://doi.org/10.1016/0038-1098(92)90892-D

    Article  CAS  Google Scholar 

  35. Masquelier C, Wurm C, Rodríguez-Carvajal J et al (2000) A powder neutron diffraction investigation of the two rhombohedral NASICON analogues: γ-Na3Fe2(PO4)3 and Li3Fe2(PO4)3. Chem Mater 12:525–532. https://doi.org/10.1021/cm991138n

    Article  CAS  Google Scholar 

  36. Liu Y, Zhou Y, Zhang J et al (2017) Monoclinic phase Na3Fe2(PO4)3: synthesis, structure, and electrochemical performance as cathode material in sodium-ion batteries. ACS Sustain Chem Eng 5:1306–1314. https://doi.org/10.1021/acssuschemeng.6b01536

    Article  CAS  Google Scholar 

  37. Qiu S, Wu X, Wang M et al (2019) NASICON-type Na3Fe2(PO4)3 as a low-cost and high-rate anode material for aqueous sodium-ion batteries. Nano Energy 64:103941–103949. https://doi.org/10.1016/j.nanoen.2019.103941

    Article  CAS  Google Scholar 

  38. Cao Y, Liu Y, Zhao D et al (2019) K-doped Na3Fe2(PO4)3 cathode materials with high-stable structure for sodium-ion stored energy battery. J Alloys Compd 784:939–946. https://doi.org/10.1016/j.jallcom.2019.01.125

    Article  CAS  Google Scholar 

  39. Walczak K, Gędziorowski B, Kulka A et al (2019) Exploring the role of manganese on structural, transport, and electrochemical properties of NASICON- Na3Fe2–yMny(PO4)3–cathode materials for Na-Ion batteries. ACS Appl Mater Interfaces 11:43046–43055. https://doi.org/10.1021/acsami.9b10184

    Article  CAS  PubMed  Google Scholar 

  40. Rajagopalan R, Chen B, Zhang Z et al (2017) Improved reversibility of Fe3+/Fe4+ redox couple in sodium super ion conductor type Na3Fe2(PO4)3 for sodium-ion batteries. Adv Mater 29:1605694–1605701. https://doi.org/10.1002/adma.201605694

    Article  CAS  Google Scholar 

  41. Bhojane P, Shirage PM (2022) Facile preparation of hexagonal WO3 nanopillars and its reduced graphene oxide nanocomposites for high-performance supercapacitor. J Energy Storage 55:105649–105661. https://doi.org/10.1016/j.est.2022.105649

    Article  Google Scholar 

  42. Yue L, Zhang J, Kong M et al (2022) Watermelon-like multicore-shell Fe(PO3)2@carbon nanocapsule anode to construct an all iron phosphate-based sodium ion battery. Nano Res 15:9026–9037. https://doi.org/10.1007/s12274-022-4678-7

    Article  CAS  Google Scholar 

  43. Vranken T, Gompel WV, D’Haen J et al (2017) Aqueous solution–gel precursors for LiFePO4 lithium ion battery cathodes, their decomposition and phase formation. J Sol-Gel Sci Technol 84:198–205. https://doi.org/10.1007/s10971-017-4467-z

    Article  CAS  Google Scholar 

  44. Windisch-Kern S, Holzer A, Ponak C et al (2021) Thermal analysis of lithium ion battery cathode materials for the development of a novel pyrometallurgical recycling approach. Carbon Resour Convers 4:184–189. https://doi.org/10.1016/j.crcon.2021.04.005

    Article  CAS  Google Scholar 

  45. An X, Yu JC, Wang Y, Hu Y et al (2012) WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J Mater Chem 22:8525–8531. https://doi.org/10.1039/C2JM16709C

    Article  CAS  Google Scholar 

  46. Bih H, Bih L, Manoun B et al (2009) Raman spectroscopic study of the phase transitions sequence in Li3Fe2(PO4)3 and Na3Fe2(PO4)3 at high temperature. J Mol Struct 936:147–155. https://doi.org/10.1016/j.molstruc.2009.07.035

    Article  CAS  Google Scholar 

  47. Wazeer W, Nabil MM, Feteha M et al (2022) Ultrafast green microwave assisted synthesis of NaFePO4-C nanocomposites for sodium ion batteries and supercapacitors. Sci Rep 12:1–12. https://doi.org/10.1038/s41598-022-20329-x

    Article  CAS  Google Scholar 

  48. Karthik M, Sathishkumar S, BoopathiRaja R et al (2020) Design and fabrication of NaFePO4/MWCNTs hybrid electrode material for sodium-ion battery. J Mater Sci Mater Electron 31:21792–21801. https://doi.org/10.1007/s10854-020-04691-y

    Article  CAS  Google Scholar 

  49. Xia X, Cao Y, Yao L et al (2020) MCNT-Reinforced Na3Fe2(PO4)3 as cathode material for sodium-ion batteries. Arab J Sci Eng 45:143–151. https://doi.org/10.1007/s13369-019-03979-4

    Article  CAS  Google Scholar 

  50. Polat O, Coskun M, Kalousek R, Zlamal J et al (2020) Frequency and temperature-dependent electric modulus spectroscopy of osmium-doped YbFeO3 structure. J Phys Condens Matter 32:065701-065717. https://doi.org/10.1088/1361-648X/ab4daa

    Article  CAS  PubMed  Google Scholar 

  51. Wu T, Sun J, Yap ZQJ et al (2019) Substantial doping engineering in Na3V2-xFex(PO4)3 (0≤x≤0.15) as high-rate cathode for sodium-ion battery. Mater Design 186:108287–108293. https://doi.org/10.1016/j.matdes.2019.108287

    Article  CAS  Google Scholar 

  52. Kumar PR, Jung YH, Moorthy B, Kim DK (2016) Effect of electrolyte additives on NaTi2(PO4)3-C//Na3V2O2X(PO4)2F3-2X-MWCNT aqueous rechargeable sodium ion battery performance. J Electrochem Soc 163:A1484–A1492. https://doi.org/10.1149/2.0031608jes

    Article  CAS  Google Scholar 

  53. Elgrishi N, Rountree KJ, McCarthy BD et al (2018) A practical beginner’s guide to cyclic voltammetry. J Chem Educ 95:197–206. https://doi.org/10.1021/acs.jchemed.7b00361

    Article  CAS  Google Scholar 

  54. Liu J, Wang J, Xu C et al (2018) Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv Sci 5:1700322–1700340. https://doi.org/10.1002/advs.201700322

    Article  CAS  Google Scholar 

  55. Cao Y, Liu Y, Zhao D et al (2020) Highly stable Na3Fe2(PO4)3@hard carbon sodium-ion full cell for low-cost energy storage. ACS Sustain Chem Eng 8:1380–1387. https://doi.org/10.1021/acssuschemeng.9b05098

    Article  CAS  Google Scholar 

  56. Middlemiss LA, Rennie AJR, Sayers R, West AR (2020) Characterization of batteries by electrochemical impedance spectroscopy. Energy Rep 6:232–241. https://doi.org/10.1016/j.egyr.2020.03.029

    Article  Google Scholar 

  57. Rahman MM, Sultana I, Mateti S et al (2017) Maricite NaFePO4/C/graphene: a novel hybrid cathode for sodium-ion batteries. J Mater Chem A 5:16616–16621. https://doi.org/10.1039/c7ta04946c

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AK acknowledges the Ministry of Education, Government of India (PMRF ID—2102231), and AKSJ acknowledges the DST INSPIRE (DST/INSPIRE/2019/IF190546) for providing a financial support. The authors are thankful to Sophisticated Instrumentation Centre and Department of Metallurgical Engineering and Materials Science, IIT Indore, for providing the research facilities.

Author information

Authors and Affiliations

Authors

Contributions

Archana Kanwade contributed conceptualization, experimental design, carrying out measurements and manuscript composition, and writing—original draft. Akash Kumar Satrughna Jena was performed writing draft and corrections. Shraddha M. Rajore was to help in experiments. Sawanta S. Mali, Jyoti V. Patil, and Chang Kook Hong provided HRTEM and XPS facilities and analysis. Parasharam M. Shirage was involved in conceptualization, funding acquisition, resources, supervision, and writing—review and editing.

Corresponding author

Correspondence to Parasharam M. Shirage.

Ethics declarations

Conflict of interest

The authors herein affirm that they are completely free from any ties or financial conflicts of interest that may have seemed to impact the results presented in this work.

Ethical approval

There are no studies carried out by any of the authors that involve human participants or animals, and this article does not contain any of such studies.

Additional information

Handling Editor: Jean-Francois Gohy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material. 

Supplementary file1 (DOCX 4440 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanwade, A.R., Jena, A.S., Rajore, S.M. et al. Revealing the potential of graphene-embedded Na3Fe2(PO4)3 for enhanced sodium-ion battery performance. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09698-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09698-y

Navigation