Skip to main content

Advertisement

Log in

Design and fabrication of NaFePO4/MWCNTs hybrid electrode material for sodium-ion battery

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Watery rechargeable sodium-ion batteries are alluring as elective materials to replace conventional lithium-ion batteries for the improvement of next-generation devices due to the abundance of sodium assets. Hence, we report the NaFePO4/MWCNT hybrid nanocomposite for high-performance cathode material for sodium-ion batteries synthesized by a facile hydrothermal route. The structural and morphological information of the products was identified through XRD, Raman and FESEM studies. The results suggest that orthorhombic crystalline structure with Pnma space group and the disk-like NaFePO4 was consistently wrapped on the MWCNT. Furthermore, the NaFePO4 wrapped MWCNT hybrid anode electrode show superior surface area (78 m2/g) and pore size (12.74 nm) than bare NaFePO4 (78 m2/g; 43.44 nm). The electrochemical results divulge that the hybrid electrode showed outstanding stability and high specific capacitance. NaFePO4/MWCNT hybrid electrode reached discharge capacity of 90 mAhg−1 at corresponding current density of 0.1 C. Still it has maintain as 98% of retention after the 100th cycles test. The EIS further hold high electrochemical nature of the NaFePO4/MWCNT composite electrode than pristine NaFePO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014)

    Article  CAS  Google Scholar 

  2. Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011)

    Article  CAS  Google Scholar 

  3. N.S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Angew. Chem. Int. Ed. 51, 9994–10024 (2012)

    Article  CAS  Google Scholar 

  4. J.M. Tarascon, Is lithium the new gold? Nat. Chem. 2, 510 (2010)

    Article  CAS  Google Scholar 

  5. B.L. Ellis, L.F. Nazar, Sodium and sodium-ion energy storage. Curr. Opin. Solid State Mater. Sci 16, 168–177 (2012)

    Article  CAS  Google Scholar 

  6. B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science. 3334, 928–935 (2011)

    Article  Google Scholar 

  7. J.B. Goodenough, P. Singh, Review—solid electrolytes in rechargeable electrochemical cells. J. Electrochem. Soc 162, 2387–2392 (2015)

    Article  Google Scholar 

  8. X.C. Ren, C.L. Guo, L.Q. Xu, T.T. Li, L.F. Hou, Y.H. Wei, Facile synthesis of hierarchical mesoporous honeycomb-like NiO for aqueous asymmetric supercapacitors. ACS. Appl. Mater. Inter. 7, 19930–19940 (2015)

    Article  CAS  Google Scholar 

  9. J.B. Goodenough, Rechargeable batteries: challenges old and new. J Solid State Electrochem. 16, 2019–2029 (2012)

    Article  CAS  Google Scholar 

  10. B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science. 334, 928–934 (2011)

    Article  CAS  Google Scholar 

  11. J. Yan, X. Liu, B. Li, Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries. RSC Adv. 4, 63268–63284 (2014)

    Article  CAS  Google Scholar 

  12. V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J.C. González, T. Rojo, Na-ion batteries, Recent advances and present challenges to become lowcost energy storage systems. Energy Environ. Sci. 5, 5884–5901 (2012)

    Article  CAS  Google Scholar 

  13. P. Barpanda, T. Ye, S. Nishimura, S. Chung, Y. Yamada, M. Okubo, H. Zhou, A. , Yamada, sodium iron pyrophosphate: a novel 3.0 V iron-based cathode for sodium-ion batteries. Electrochem. Commun. 24, 116–119 (2012)

    Article  CAS  Google Scholar 

  14. V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-Gonzalez, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884–5901 (2012)

    Article  CAS  Google Scholar 

  15. H. Kim, I. Park, D.-H. Seo, S. Lee, S.-W. Kim, W.J. Kwon, Y.-U. Park, C.S. Kim, S. Jeon, K. Kang, New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined First principles calculations and experimental study. J. Am. Chem. Soc. 134, 10369–10372 (2012)

    Article  CAS  Google Scholar 

  16. Y. Zhu, Y. Xu, Y. Liu, C. Luo, C. Wang, Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 5, 780–787 (2013)

    Article  CAS  Google Scholar 

  17. A.J. Fernández-Ropero, D. Saurel, B. Acebedo, T. Rojo, M. Casas-Cabanas, Electrochemical characterization of NaFePO4 as positive electrode in aqueous sodium-ion batteries. J. Power Sources. 291, 40–45 (2015)

    Article  Google Scholar 

  18. T.H. Ko, D. Lei, S. Balasubramaniam, M.K. Seo, Y.S. Chung, H.Y. Kim, B.S. Kim, Polypyrrole-decorated hierarchical NiCo2O4 nanoneedles/carbon fiber papers for flexible high-performance supercapacitor applications. Electrochim. Acta 247, 524–534 (2017)

    Article  CAS  Google Scholar 

  19. B.L. Ellis, W.R. Makahnouk, W.N. Weetaluktuk, D.H. Ryan, L.F. Nazar, Crystal structure and electrochemical properties of A2MPO4F fluorophosphates (A = Na, Li;M = Fe, Mn Co, Ni). Chem. Mater. 22, 1059–1070 (2010)

    Article  CAS  Google Scholar 

  20. R. Tripathi, S.M. Wood, M.S. Islam, L.F. Nazar, Na-ion mobility in layered Na2FePO4F and olivine Na[Fe, Mn]PO4. Energy Environ. Sci. 6, 2257–2264 (2013)

    Article  CAS  Google Scholar 

  21. M. Ramzan, S. Lebègue, P. Larsson, R. Ahuja, Structural, magnetic, and energetic properties of Na2FePO4F, Li2FePO4F, NaFePO4F, and LiFePO4F from ab initio calculations. J. Appl. Phys. 106, 043510–043516 (2009)

    Article  Google Scholar 

  22. Y.C. Chiang, W.H. Lin, Y.C. Chang, The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation. Appl. Surf. Sci. 257, 2401–2410 (2011)

    Article  CAS  Google Scholar 

  23. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, A novel microwave synthesis of nanocrystalline SnO2 and its structural optical and dielectric properties. J. Mater. Sci. Mater. Electron. 25, 730–735 (2014)

    Article  CAS  Google Scholar 

  24. A. Jafari, M.H. Alam, D. Dastan, S. Ziakhodadadian, Z. Shi, H. Garmestani, A.S. Weidenbach, Ş Ţălu, Statistical, morphological, and corrosion behavior of PECVD derived cobalt oxide thin films. J Mater. Sci; Mater. Electron. 30, 21185–21198 (2019)

    Article  CAS  Google Scholar 

  25. A. Jafari, K. Tahani, D. Dastan, S. Asgary, Z. Shi, X.-T. Yin, W.-D. Zhou, H. Garmestani, S. Ţălu, Ion implantation of copper oxide thin films; statistical and experimental results. Surf. Interfaces. 18, 100463 (2020)

    Article  CAS  Google Scholar 

  26. S.D. Dalt, A.K. Alves, C.P. Bergmann, Photocatalytic degradation of methyl orange dye in water solutions in the presence of MWCNT/TiO2 composites. Mater. Res. Bull. 48, 1845–1850 (2013)

    Article  Google Scholar 

  27. Y. Kawabe, N. Yabuuchi, M. Kajiyama, N. Fukuhara, T. Inamasu, R. Okuyama, I. Nakai, S. Komaba, Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries. E. Chem. Commun. 13, 1225–1228 (2011)

    CAS  Google Scholar 

  28. R. BoopathiRaja, M. Parthibavarman, Hetero-structure arrays of MnCo2O4 nanoflakes@ nanowires grown on Ni foam: design, fabrication and applications in electrochemical energy storage. J. Alloy. Compd. 811, 152084 (2019)

    Article  CAS  Google Scholar 

  29. M. Parthibavarman, S. Bhuvaneshwari, M. Jayashree, R. BoopathiRaja, Green synthesis of silver (Ag) nanoparticles using extract of apple and grape and with enhanced visible light photocatalytic activity. J. Bionanosci. 2, 423–432 (2019)

    Article  Google Scholar 

  30. D. Dastan, N. Chaure, M. Kartha, Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation. J. Mater Sci: Mater. Electron. 28, 7784–7796 (2017)

    CAS  Google Scholar 

  31. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci 254, 2441–2449 (2008)

    Article  CAS  Google Scholar 

  32. Y. Liu, S.J. Xu, S.M. Zhang, J.X. Zhang, J.C. Fan, Y.R. Zhou, Direct growth of FePO4/reduced graphene oxide nanosheet composites for the sodium-ion battery. J. Mater. Chem. A 3, 5501–5508 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Karthik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthik, M., Sathishkumar, S., BoopathiRaja, R. et al. Design and fabrication of NaFePO4/MWCNTs hybrid electrode material for sodium-ion battery. J Mater Sci: Mater Electron 31, 21792–21801 (2020). https://doi.org/10.1007/s10854-020-04691-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04691-y

Navigation