Skip to main content
Log in

A review: recent advances in conductive aerogels: assembly strategies, conductive mechanisms, influencing factors and applications

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Conductive aerogel is a material with excellent electrical conductivity and unique three-dimensional nano-network structure, formed by doping conductive fillers into the aerogel, or directly through conductive substances such as conductive polymer. In addition, it has the advantages of high porosity, high specific surface area, low density, excellent flexibility and low cost. The purpose of this review is to summarize the research status of conductive aerogels to open up new ideas for scientific research in related fields for readers. Firstly, we summarize the assembly strategies of conductive aerogel. The assembly process includes preparation and drying of the gel. In addition, the aging process is involved. Secondly, we review its conduction mechanism. Then, the effects of pressure, temperature and humidity on the properties of conductive aerogels are summarized. Notably, conductive aerogel has piezoresistive effect because of its elasticity and compressibility. Finally, based on the properties of conductive aerogels and their advantages in electrical conductivity, we summarize the applications of conductive aerogels in supercapacitor, electrocatalysis, sensors and electromagnetic interference shielding. This review summarizes the current development and application of conductive aerogel in recent years, which provides strong support for the future development of conductive aerogel.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

No data were used for the research described in the article.

References

  1. Lamy-Mendes A, Silva RF, Durães L (2018) Advances in carbon nanostructure-silica aerogel composites: a review. J Mater Chem A 6:1340–1369

    Article  CAS  Google Scholar 

  2. Li Y, Zhang X (2021) Electrically conductive, optically responsive, and highly orientated Ti3C2Tx MXene aerogel fibers. Adv Funct Mater 32:2107767

    Article  Google Scholar 

  3. Hirashima H (2011) Preparation of TiO2 aerogels-like materials under ambient pressure. Aerogels Handb pp 145–153

  4. Rigacci A, Achard P (2011) Cellulosic and polyurethane aerogels. Aerogels Handb, pp 191–214

  5. Kim CHJ, Zhao D, Lee G, Liu J (2016) Strong, machinable carbon aerogels for high performance supercapacitors. Adv Funct Mater 26:4976–4983

    Article  CAS  Google Scholar 

  6. Maleki H (2016) Recent advances in aerogels for environmental remediation applications: a review. Chem Eng J 300:98–118

    Article  CAS  Google Scholar 

  7. Wan W, Zhang R, Ma M, Zhou Y (2018) Monolithic aerogel photocatalysts: a review. J Mater Chem A 6:754–775

    Article  CAS  Google Scholar 

  8. Wang DC, Yu HY, Qi D, Ramasamy M, Yao J, Tang F, Tam KMC, Ni Q (2019) Supramolecular self-assembly of 3D conductive cellulose nanofiber aerogels for flexible supercapacitors and ultrasensitive sensors. ACS Appl Mater Interfaces 11:24435–24446

    Article  CAS  PubMed  Google Scholar 

  9. Ochoa M, Durães L, Beja AM, Portugal A (2011) Study of the suitability of silica based xerogels synthesized using ethyltrimethoxysilane and/or methyltrimethoxysilane precursors for aerospace applications. J Sol Gel Sci Technol 61:151–160

    Article  Google Scholar 

  10. Baetens R, Jelle BP, Gustavsen A (2011) Aerogel insulation for building applications: a state-of-the-art review. Energy Build 43:761–769

    Article  Google Scholar 

  11. Matias T, Marques J, Quina MJ, Gando-Ferreira L, Valente AJM, Portugal A, Durães L (2015) Silica-based aerogels as adsorbents for phenol-derivative compounds. Colloids Surf A 480:260–269

    Article  CAS  Google Scholar 

  12. Cheng R, Zeng J, Wang B, Li J, Cheng Z, Xu J, Gao W, Chen K (2021) Ultralight, flexible and conductive silver nanowire/nanofibrillated cellulose aerogel for multifunctional strain sensor. Chem Eng J 424:130565

    Article  CAS  Google Scholar 

  13. Cao C, Yuan B (2021) Thermally induced fire early warning aerogel with efficient thermal isolation and flame-retardant properties. Polym Adv Technol 32:2159–2168

    Article  CAS  Google Scholar 

  14. Chen Y, Zhang L, Yang Y, Pang B, Xu W, Duan G, Jiang S, Zhang K (2021) Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication. Adv Mater 33:2005569

    Article  CAS  Google Scholar 

  15. Ji F, Sun Z, Hang T, Zheng J, Li X, Duan G, Zhang C, Chen Y (2022) Flexible piezoresistive pressure sensors based on nanocellulose aerogels for human motion monitoring: a review. Compos Commun 35:101351

    Article  Google Scholar 

  16. Fu Q, Cui C, Meng L, Hao S, Dai R, Yang J (2021) Emerging cellulose-derived materials: a promising platform for the design of flexible wearable sensors toward health and environment monitoring. Mater Chem Front 5:2051–2091

    Article  CAS  Google Scholar 

  17. Wei C, Zhang Q, Wang Z, Yang W, Lu H, Huang Z, Yang W, Zhu J (2022) Recent advances in MXene-based aerogels: fabrication. Adv Funct Mater 33:2211889

    Article  Google Scholar 

  18. Yue Y, Liu N, Ma Y, Wang S, Liu W, Luo C, Zhang H, Cheng F, Rao J, Hu X, Su J, Gao Y (2018) Highly self-healable 3D microsupercapacitor with MXene–graphene composite aerogel. ACS Nano 12:4224–4232

    Article  CAS  PubMed  Google Scholar 

  19. Zhao S, Zhang HB, Luo JQ, Wang QW, Xu B, Hong S, Yu ZZ (2018) Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12:11193–11202

    Article  CAS  PubMed  Google Scholar 

  20. Yan S, Zhang G, Jin X, Jiang H, Li F, Zhang L, Wang Z, Fan L, Li H (2018) Rapid room-temperature self-healing conductive nanocomposites based on naturally dried graphene aerogels. J Mater Chem C 6:10184–10191

    Article  CAS  Google Scholar 

  21. Orangi J, Tetik H, Parandoush P, Kayali E, Lin D, Beidaghi M (2021) Conductive and highly compressible MXene aerogels with ordered microstructures as high-capacity electrodes for Li-ion capacitors. Mater Today Adv 9:100135

    Article  CAS  Google Scholar 

  22. Huang J, Wang Y, Guo J, Wu S, Xie H, Zhou S (2022) Anisotropic conductive shape-memory aerogels as adaptive reprogrammable wearable electronics for accurate long-term pressure sensing. J Mater Chem A 10:3933–3943

    Article  CAS  Google Scholar 

  23. Tian Z, Zhao Y, Wang S, Zhou G, Zhao N, Wong C-P (2020) A Highly stretchable and conductive composite based on an emulsion-templated silver nanowire aerogel. J Mater Chem A 8:1724–1730

    Article  CAS  Google Scholar 

  24. Huang S, Kong X, Xiong Y, Zhang X, Chen H, Jiang W, Niu Y, Xu W, Ren C (2020) An overview of dynamic covalent bonds in polymer material and their applications. Eur Polym J 141:110094

    Article  CAS  Google Scholar 

  25. Du Y, Xu J, Fang J, Zhang Y, Liu X, Zuo P, Zhuang Q (2022) Ultralight, highly compressible, thermally stable MXene/aramid nanofiber anisotropic aerogels for electromagnetic interference shielding. J Mater Chem A 10:6690–6700

    Article  CAS  Google Scholar 

  26. Fu C, Sheng Z, Zhang X (2022) Laminated structural engineering strategy toward carbon nanotube-based aerogel films. ACS Nano 16:9378–9388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Feng L, Wei P, Song Q, Zhang J, Fu Q, Jia X, Yang J, Shao D, Li Y, Wang S, Qiang X, Song H (2022) Superelastic, highly conductive, superhydrophobic, and powerful electromagnetic shielding hybrid aerogels built from orthogonal graphene and boron nitride nanoribbons. ACS Nano 16:17049–17061

    Article  CAS  PubMed  Google Scholar 

  28. Zhao HB, Yuan L, Fu ZB, Wang CY, Yang X, Zhu JY, Qu J, Chen HB, Schiraldi DA (2016) Biomass-based mechanically strong and electrically conductive polymer aerogels and their application for supercapacitors. ACS Appl Mater Interfaces 8:9917–9924

    Article  CAS  PubMed  Google Scholar 

  29. Naguib M, Saito T, Lai S, Rager MS, Aytug T, Parans Paranthaman M, Zhao M-Q, Gogotsi Y (2016) Ti3C2Tx(MXene)–polyacrylamide nanocomposite films. RSC Adv 6:72069–72073

    Article  CAS  Google Scholar 

  30. Ling Z, Ren CE, Zhao MQ, Yang J, Giammarco JM, Qiu J, Barsoum MW, Gogotsi Y (2014) Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl A Sci 111:16676–16681

    Article  CAS  Google Scholar 

  31. Zhao Y, Li MP, Liu S, Islam MF (2017) Superelastic pseudocapacitors from freestanding MnO2-decorated graphene-coated carbon nanotube aerogels. ACS Appl Mater Interfaces 9:23810–23819

    Article  CAS  PubMed  Google Scholar 

  32. Pottathara YB, Tiyyagura HR, Ahmad Z, Sadasivuni KK (2020) Graphene based aerogels: fundamentals and applications as supercapacitors. J Energy Storage 30:101549

    Article  Google Scholar 

  33. Tai J, Bi Y, Ni C, Wu X, Koudama TD, Cui S, Shen X, Chen X (2023) Modulating interfacial charge density of FeCo oxyhydroxides via coupling with graphene oxide aerogel for boosting oxygen evolution reaction. J Alloys Compd 934:167911

    Article  CAS  Google Scholar 

  34. Kim T, Roy SB, Moon S, Yoo S, Choi H, Parale VG, Kim Y, Lee J, Jun SC, Kang K, Chun SH, Kanamori K, Park HH (2022) Highly dispersed Pt clusters on F-doped tin (IV) oxide aerogel matrix: an ultra-robust hybrid catalyst for enhanced hydrogen evolution. ACS Nano 16:1625–1638

    Article  CAS  PubMed  Google Scholar 

  35. Deng Z, Tang P, Wu X, Zhang H-B, Yu Z-Z (2021) Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl Mater Interfaces 13:20539–20547

    Article  CAS  PubMed  Google Scholar 

  36. Chen T, Yang G, Li Y, Li Z, Ma L, Yang S, Wang J (2022) Temperature-adaptable pressure sensors based on MXene-coated GO hierarchical aerogels with superb detection capability. Carbon 200:47–55

    Article  CAS  Google Scholar 

  37. Janulevicius M, Klimkevicius V, Mikoliunaite L, Vengalis B, Vargalis R, Sakirzanovas S, Plausinaitiene V, Zilinskas A, Katelnikovas A (2020) Ultralight magnetic nanofibrous GdPO4 aerogel. ACS Omega 5:14180–14185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Silviana S, Prastiti EC, Hermawan F, Setyawan A (2022) Optimization of the sound absorption coefficient (SAC) from cellulose-silica aerogel using the Box–Behnken design. ACS Omega 7:41968–41980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Onwukamike KN, Lapuyade L, Maillé L, Grelier S, Grau E, Cramail H, Meier MAR (2019) Sustainable approach for cellulose aerogel preparation from the DBU–CO2 switchable solvent. ACS Sustain Chem Eng 7:3329–3338

    Article  CAS  Google Scholar 

  40. Das S, Ghosh R, Routh P, Shit A, Mondal S, Panja A, Nandi AK (2018) Conductive MoS2 quantum dot/polyaniline aerogel for enhanced electrocatalytic hydrogen evolution and photoresponse properties. ACS Appl Nano Mater 1:2306–2316

    Article  CAS  Google Scholar 

  41. Yang X, Shi K, Zhitomirsky I, Cranston ED (2015) Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv Mater 27:6104–6109

    Article  CAS  PubMed  Google Scholar 

  42. Yu Z, Qin B, Ma Z, Huang J, Li S, Zhao H, Li H, Zhu Yb WuH, Yu S (2019) Superelastic hard carbon nanofiber aerogels. Adv Mater 31:1900651

    Article  Google Scholar 

  43. Yang Y, Zhao M, Geng H, Zhang Y, Fang Y, Li C, Zhao J (2019) Three-dimensional graphene/Ag aerogel for durable and stable Li metal anodes in carbonate-based electrolytes. Chem - Eur J 25:5036–5042

    Article  CAS  PubMed  Google Scholar 

  44. Liu B, Ren X, Yin J, Zhu K, Yan J, Ye K, Wang G, Cao D (2021) VS4 nanorods anchored graphene aerogel as a conductive agent-free electrode for high-performance lithium-ion batteries. ACS Appl Energy Mater 5:567–574

    Article  Google Scholar 

  45. Nystrom G, Fernandez-Ronco MP, Bolisetty S, Mazzotti M, Mezzenga R (2016) Amyloid templated gold aerogels. Adv Mater 28:472–478

    Article  PubMed  Google Scholar 

  46. Yun S, Luo H, Gao Y (2015) Low-Density, hydrophobic, highly flexible ambient-pressure-dried monolithic bridged silsesquioxane aerogels. J Mater Chem A 3:3390–3398

    Article  CAS  Google Scholar 

  47. Zhu D, Zhu Y, Yan Q, Barnes M, Liu F, Yu P, Tseng C-P, Tjahjono N, Huang P-C, Rahman MM, Egap E, Ajayan PM, Verduzco R (2021) Pure crystalline covalent organic framework aerogels. Chem Mater 33:4216–4224

    Article  CAS  Google Scholar 

  48. Zhou C, Wu T, Xie X, Song G, Ma X, Mu Q, Huang Z, Liu X, Sun C, Xu W (2022) Advances and challenges in conductive hydrogels: from properties to applications. Eur Polym J 177:111454

    Article  CAS  Google Scholar 

  49. Zhou C, Zhao X, Xiong Y, Tang Y, Ma X, Tao Q, Sun C, Xu W (2022) A Review of etching methods of MXene and applications of MXene conductive hydrogels. Eur Polym J 167:111063

    Article  CAS  Google Scholar 

  50. Alain CP, GrM P (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4265

    Article  Google Scholar 

  51. Kistler SS (1932) Coherent expanded-aerogels. J Phys Chem 36:52

    Article  CAS  Google Scholar 

  52. Peri JB (1966) Infrared study of OH and NH2 groups on the surface of a dry silica aerogel. J Phys Chem 70:2937

    Article  CAS  Google Scholar 

  53. Ge H, Bibent N, Teixeira Santos K, Kumar K, Jaxel J, Sougrati M-T, Zitolo A, Dupont M, Lecoeur F, Mermoux M, Martin V, Dubau L, Jaouen F, Maillard F, Berthon-Fabry S (2023) Modulating the Fe–N4 active site content by nitrogen source in Fe–N–C aerogel catalysts for proton exchange membrane fuel Cell. ACS Catal 13:1149–1163

    Article  CAS  Google Scholar 

  54. Wang L, Song G, Qiao X, Xiong G, Liu Y, Zhang J, Guo R, Chen G, Zhou Z, Li Q (2019) Facile fabrication of flexible, robust, and superhydrophobic hybrid aerogel. Langmuir 35:8692–8698

    Article  CAS  PubMed  Google Scholar 

  55. Mulyadi A, Zhang Z, Deng Y (2016) Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Appl Mater Interfaces 8:2732–2740

    Article  CAS  PubMed  Google Scholar 

  56. Chen H, Zhao Y, Shen P, Wang J, Huang W, Schiraldi DA (2015) Effects of molecular weight upon irradiation-cross-linked poly (vinyl alcohol)/clay aerogel properties. ACS Appl Mater Interfaces 7:20208–20214

    Article  CAS  PubMed  Google Scholar 

  57. Li X, Jia Z, Zhang J, Zou Y, Jiang B, Zhang Y, Shu K, Liu N, Li Y, Ma L (2022) Moderate and universal synthesis of undoped covalent organic framework aerogels for enhanced lodine uptake. Chem Mater 34:11062–11071

    Article  CAS  Google Scholar 

  58. Saliger R, Bock V, Petricevic R, Tillotson T, Geis S, Fricke J (1997) Carbon aerogels from dilute catalysis of resorcinol with formaldehyde. J Non Cryst Solids 221:144–150

    Article  CAS  Google Scholar 

  59. Han X, Harris J, Šiller L (2018) Synthesis of porous zinc-based/zinc oxide composites via sol–gel and ambient pressure drying routes. J Mater Sci 53:8170–8179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jiang M, Li H, Zhou L, Xing R, Zhang J (2018) Hierarchically porous graphene/ZIF-8 hybrid aerogel: preparation, CO2 uptake capacity, and mechanical property. ACS Appl Mater Interfaces 10:827–834

    Article  CAS  PubMed  Google Scholar 

  61. Linhares T, Pessoa de Amorim MT, Durães L (2019) Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications. J Mater Chem A 7:22768–22802

    Article  CAS  Google Scholar 

  62. Wang P, Yang L, Zhou Y, Gao S, Cao T, Feng S, Xu P, Ding Y (2021) Synergistic effect of EVA-GMA and nanofillers on mechanical and dielectric properties of polyamide. Compos Commun 25:100738

    Article  Google Scholar 

  63. Abdul Razak NI, Yusoff N, Ahmad MH, Zulkifli M, Wahit MU (2023) Dielectric, mechanical, and thermal properties of crosslinked polyethylene nanocomposite with hybrid nanofillers. Polymers 15:1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guan F-L, An F, Yang J, Li X, Li X-H, Yu Z-Z (2017) Fiber-reinforced three-dimensional graphene aerogels for electrically conductive epoxy composites with enhanced mechanical properties. Chin J Polym Sci 35:1381–1390

    Article  CAS  Google Scholar 

  65. Dourani A, Haghgoo M, Hamadanian M (2019) Multi-walled carbon nanotube and carbon nanofiber/polyacrylonitrile aerogel scaffolds for enhanced epoxy resins. Compos Part B 176:107299

    Article  CAS  Google Scholar 

  66. Qian F, Lan PC, Freyman MC, Chen W, Kou T, Olson TY, Zhu C, Worsley MA, Duoss EB, Spadaccini CM, Baumann T, Han TY-J (2017) Ultralight conductive silver nanowire aerogels. Nano Lett 17:7171–7176

    Article  CAS  PubMed  Google Scholar 

  67. Hu Y, Zhuo H, Chen Z, Wu K, Luo Q, Liu Q, Jing S, Liu C, Zhong L, Sun R, Peng X (2018) Superelastic carbon aerogel with ultrahigh and wide-range linear sensitivity. ACS Appl Mater Interfaces 10:40641–40650

    Article  CAS  PubMed  Google Scholar 

  68. Yang S, Shen C, Chen L, Wang C, Rana M, Lv P (2018) Vapor-liquid deposition strategy to prepare superhydrophobic and superoleophilic graphene aerogel for oil–water separation. ACS Appl Nano Mater 1:531–540

    Article  CAS  Google Scholar 

  69. Han Y, Cao Y, Bolisetty S, Tian T, Handschin S, Lu C, Mezzenga R (2020) Amyloid fibril-templated high-performance conductive aerogels with sensing properties. Small 16:e2004932

    Article  Google Scholar 

  70. Yang GY, Wang SZ, Sun HT, Yao XM, Li CB, Li YJ, Jiang JJ (2021) Ultralight, conductive Ti3C2Tx MXene/PEDOT:PSS hybrid aerogels for electromagnetic interference shielding dominated by the absorption mechanism. ACS Appl Mater Interfaces 13:57521–57531

    Article  CAS  PubMed  Google Scholar 

  71. Touron M, Celle C, Orgeas L, Simonato JP (2022) Hybrid silver nanowire-CMC aerogels: From 1d nanomaterials to 3D electrically conductive and mechanically resistant lightweight architectures. ACS Nano 16:14188–14197

    Article  CAS  PubMed  Google Scholar 

  72. Han M, Yin X, Hantanasirisakul K, Li X, Iqbal A, Hatter CB, Anasori B, Koo CM, Torita T, Soda Y, Zhang L, Cheng L, Gogotsi Y (2019) Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv Opt Mater 7:1900267

    Article  Google Scholar 

  73. Zhuo H, Hu Y, Chen Z, Peng X, Liu L, Luo Q, Yi J, Liu C, Zhong L (2019) A carbon aerogel with super mechanical and sensing performances for wearable piezoresistive sensors. J Mater Chem A 7:8092–8100

    Article  CAS  Google Scholar 

  74. Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J (2013) Ultralight and highly compressible graphene aerogels. Adv Mater 25:2219–2223

    Article  CAS  PubMed  Google Scholar 

  75. Zhang C, Huang R, Wang P, Wang Y, Zhou Z, Zhang H, Wu Z, Li L (2020) Highly compressible, thermally conductive, yet electrically insulating fluorinated graphene aerogel. ACS Appl Mater Interfaces 12:58170–58178

    Article  CAS  PubMed  Google Scholar 

  76. Foo CY, Huang NM, Lim HN, Jiang Z-T, Altarawneh M (2019) Hydrostatic bath synthesis of conductive polypyrrole/reduced graphene oxide aerogel as compression sensor. Eur Polym J 117:227–235

    Article  CAS  Google Scholar 

  77. Kim J, Han NM, Kim J, Lee J, Kim JK, Jeon S (2018) Highly conductive and fracture-resistant epoxy composite based on non-oxidized graphene flake aerogel. ACS Appl Mater Interfaces 10:37507–37516

    Article  CAS  PubMed  Google Scholar 

  78. Hu P, Lyu J, Fu C, Gong W, Liao J, Lu W, Chen Y, Zhang X (2020) Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 14:688–697

    Article  CAS  PubMed  Google Scholar 

  79. Reddy S, Du R, Kang L, Mao N, Zhang J (2016) Three dimensional CNTs aerogel/MoSx as an electrocatalyst for hydrogen evolution reaction. Appl Catal B 194:16–21

    Article  CAS  Google Scholar 

  80. Wu J, Li H, Lai X, Chen Z, Zeng X (2020) Conductive and superhydrophobic F-rGO@CNTs/chitosan aerogel for piezoresistive pressure sensor. Chem Eng J 386:123998

    Article  CAS  Google Scholar 

  81. He J, Chen Y, Lv W, Wen K, Xu C, Zhang W, Qin W, He W (2016) Three-dimensional CNT/graphene–Li2S aerogel as freestanding cathode for high-performance Li–S batteries. ACS Energy Lett 1:820–826

    Article  CAS  Google Scholar 

  82. Liu J, Zhang HB, Xie X, Yang R, Liu Z, Liu Y, Yu ZZ (2018) Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 14:e1802479

    Article  PubMed  Google Scholar 

  83. Zhou X, Li S, Zhang M, Yuan X, Wen J, Xi H, Wu H, Ma X (2023) MXene/PEO aerogels with two-hierarchically porous architecture for electromagnetic wave absorption. Carbon 204:538–546

    Article  CAS  Google Scholar 

  84. Lu Z, Jia F, Zhuo L, Ning D, Gao K, Xie F (2021) Micro-porous MXene/aramid nanofibers hybrid aerogel with reversible compression and efficient EMI shielding performance. Compos B Eng 217:108853

    Article  CAS  Google Scholar 

  85. Zhi H, Zhang X, Wang F, Wan P, Feng L (2021) Flexible Ti3C2Tx MXene/PANI/bacterial cellulose aerogel for e-skins and gas sensing. ACS Appl Mater Interfaces 13:45987–45994

    Article  CAS  PubMed  Google Scholar 

  86. Xi W, Zhang Y, Zhang J, Wang R, Gong Y, He B, Wang H, Jin J (2023) Constructing MXene hydrogels and aerogels for rechargeable supercapacitors and batteries. J Mater Chem C 11:2414–2429

    Article  CAS  Google Scholar 

  87. Garemark J, Yang X, Sheng X, Cheung O, Sun L, Berglund LA, Li Y (2020) Top-down approach making anisotropic cellulose aerogels as universal substrates for multifunctionalization. ACS Nano 14:7111–7120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Peng F, Zhu W, Fang Y, Fu B, Chen H, Ji H, Ma X, Hang C, Li M (2023) Ultralight and highly conductive silver nanowire aerogels for high-performance electromagnetic interference shielding. ACS Appl Mater Interfaces 15:4284–4293

    Article  CAS  PubMed  Google Scholar 

  89. Zhang M, Wang Y, Zhang Y, Song J, Si Y, Yan J, Ma C, Liu YT, Yu J, Ding B (2020) Conductive and elastic TiO2 nanofibrous aerogels: a new concept toward self-supported electrocatalysts with superior activity and durability. Angew Chem Int Ed 59:23252–23260

    Article  CAS  Google Scholar 

  90. Sun G, Xie H, Ran J, Ma L, Shen X, Hu J, Tong H (2016) Rational design of uniformly embedded metal oxide nanoparticles into nitrogen-doped carbon aerogel for high-performance asymmetric supercapacitors with a high operating voltage window. J Mater Chem A 4:16576–16587

    Article  CAS  Google Scholar 

  91. Zhu T, Wang Y, Li Y, Cai R, Zhang J, Yu C, Wu J, Cui J, Zhang Y, Ajayan PM, Wu Y (2020) CoO quantum dots anchored on reduced graphene oxide aerogels for lithium-ion storage. ACS Appl Nano Mater 3:10369–10379

    Article  CAS  Google Scholar 

  92. Zhang M, Wang X, Yang D, Zhao T, Qu J, Yu Z (2023) Hierarchical aerogels with hollow Co3O4 nanoparticles and graphitized carbon vesicles embedded in multi-channel carbon nanofibers for high-performance asymmetric supercapacitors. Chem Eng J 451:138434

    Article  CAS  Google Scholar 

  93. Zhou J, Hsieh YL (2018) Conductive polymer protonated nanocellulose aerogels for tunable and linearly responsive strain sensors. ACS Appl Mater Interfaces 10:27902–27910

    Article  CAS  PubMed  Google Scholar 

  94. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless dirac fermions in graphene. Nature 438:197–200

    Article  CAS  PubMed  Google Scholar 

  95. Chen L, Li N, Yu X, Zhang S, Liu C, Song Y, Li Z, Han S, Wang W, Yang P, Hong N, Ali S, Wang Z (2023) A general way to manipulate electrical conductivity of graphene. Chem Eng J 462:142139

    Article  CAS  Google Scholar 

  96. Li L, Li B, Sun H, Zhang J (2017) Compressible and conductive carbon aerogels from waste paper with exceptional performance for oil/water separation. J Mater Chem A 5:14858–14864

    Article  CAS  Google Scholar 

  97. Wang Y, Kong D, Shi W, Liu B, Sim GJ, Ge Q, Yang HY (2016) Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries. Adv Energy Mater 6:1601057

    Article  Google Scholar 

  98. Hu Y, Zhuo H, Luo Q, Wu Y, Wen R, Chen Z, Liu L, Zhong L, Peng X, Sun R (2019) Biomass polymer-assisted fabrication of aerogels from MXenes with ultrahigh compression elasticity and pressure sensitivity. J Mater Chem A 7:10273–10281

    Article  CAS  Google Scholar 

  99. Wu N, Yang Y, Wang C, Wu Q, Pan F, Zhang R, Liu J, Zeng Z (2022) Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust multifunctional MXene aerogels. Adv Mater 35:2207969

    Article  Google Scholar 

  100. Ma Y, Liu N, Li L, Hu X, Zou Z, Wang J, Luo S, Gao Y (2017) A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat Commun 8:1207

    Article  PubMed  PubMed Central  Google Scholar 

  101. Li J, Chen S, Zhu X, She X, Liu T, Zhang H, Komarneni S, Yang D, Yao X (2017) Toward aerogel electrodes of superior rate performance in supercapacitors through engineered hollow nanoparticles of NiCo2O4. Adv Sci 4:1700345

    Article  Google Scholar 

  102. Tran NQ, Le TA, Lee H (2018) An ultralight and flexible sodium titanate nanowire aerogel with superior sodium storage. J Mater Chem A 6:17495–17502

    Article  CAS  Google Scholar 

  103. Huang J, Li J, Xu X, Hua L, Lu Z (2022) In situ loading of polypyrrole onto aramid nanofiber and carbon nanotube aerogel fibers as physiology and motion sensors. ACS Nano 16:8161–8171

    Article  CAS  PubMed  Google Scholar 

  104. Zhou J, Luo J, Hao G, Guo F, Liu G, Guo H, Zhang G, Xiao L, Hu Y, Jiang W (2022) A freestanding 3D heterophase tungsten disulfide-based aerogel as an ultrathin microwave absorber in the Ku-band. J Mater Chem A 10:13848–13857

    Article  CAS  Google Scholar 

  105. Gupta P, Sathwane M, Chhajed M, Verma C, Grohens Y, Seantier B, Agrawal AK, Maji PK (2022) Surfactant assisted in situ synthesis of nanofibrillated cellulose/polymethylsilsesquioxane aerogel for tuning its thermal performance. Macromol Rapid Commun 44:e2200628

    Article  PubMed  Google Scholar 

  106. Zhang M, Dong L, Zhang C, Yin F, Peng H, Wang G (2020) Heterogeneous nucleation of Li3VO4 regulated in dense graphene aerogel for lithium ion capacitors. J Power Sources 468:228364

    Article  CAS  Google Scholar 

  107. Qi C, Wu X, Liu J, Luo X, Zhang H, Yu Z (2023) Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and joule heating. J Mater Sci Technol 135:213–220

    Article  CAS  Google Scholar 

  108. Yang B, Wang L, Zhao J, Pang R, Yuan B, Tan J, Song S, Nie J, Zhang M (2022) A robust, flexible, hydrophobic, and multifunctional pressure sensor based on an MXene/aramid nanofiber (ANF) aerogel film. ACS Appl Mater Interfaces 14:47075–47088

    Article  CAS  PubMed  Google Scholar 

  109. Wang L, Zhang X, He Y, Wang Y, Zhong W, Mequanint K, Qiu X, Xing M (2019) Ultralight conductive and elastic aerogel for skeletal muscle atrophy regeneration. Adv Funct Mater 29:1806200

    Article  Google Scholar 

  110. Yan C, Jia S, Wei J, Shao Z (2022) Construction of hierarchical porous derived from the cellulose nanofiber/graphene/Zn/Co ZIF 3D conductive carbon aerogels for high-performance supercapacitors. J Alloys Compd 920:165868

    Article  CAS  Google Scholar 

  111. Huang J, Li D, Zhao M, Ke H, Mensah A, Lv P, Tian X, Wei Q (2019) Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors. Chem Eng J 373:1357–1366

    Article  CAS  Google Scholar 

  112. Huang H, Liu C, Zhou D, Jiang X, Zhong G, Yan D, Li Z (2015) Cellulose composite aerogel for highly efficient electromagnetic interference shielding. J Mater Chem A 3:4983–4991

    Article  CAS  Google Scholar 

  113. Yuan J, Yan B, Zhou M, Wang P, Yu Y, Yuan J, Wang Q (2021) A facile strategy to construct flexible and conductive silk fibroin aerogel for pressure sensors using bifunctional PEG. Eur Polym J 153:110513

    Article  CAS  Google Scholar 

  114. Cao X, Zhang J, Chen S, Varley RJ, Pan K (2020) 1D/2D nanomaterials synergistic, compressible, and response rapidly 3D graphene aerogel for piezoresistive sensor. Adv Funct Mater 30:2003618

    Article  CAS  Google Scholar 

  115. Wang Y, Ge Q, Chen X, Qi S, Tian G, Wu D (2017) Ultralight and flexible MWNTs/polyimide hybrid aerogels for elastic conductors. Macromol Mater Eng 302:1700082

    Article  Google Scholar 

  116. Ma Y, Yue Y, Zhang H, Cheng F, Zhao W, Rao J, Luo S, Wang J, Jiang X, Liu Z, Liu N, Gao Y (2018) 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12:3209–3216

    Article  CAS  PubMed  Google Scholar 

  117. Zhai J, Zhang Y, Cui C, Li A, Wang W, Guo R, Qin W, Ren E, Xiao H, Zhou M (2021) Flexible waterborne polyurethane/cellulose nanocrystal composite aerogels by integrating graphene and carbon nanotubes for a highly sensitive pressure sensor. ACS Sustain Chem Eng 9:14029–14039

    Article  CAS  Google Scholar 

  118. Moon IK, Yoon S, Chun K-Y, Oh J (2015) Highly elastic and conductive N-doped monolithic graphene aerogels for multifunctional applications. Adv Funct Mater 25:6976–6984

    Article  CAS  Google Scholar 

  119. Chen S, Chen Y, Li D, Xu Y, Xu F (2021) Flexible and sensitivity-adjustable pressure sensors based on carbonized bacterial nanocellulose/wood-derived cellulose nanofibril composite aerogels. ACS Appl Mater Interfaces 13:8754–8763

    Article  CAS  PubMed  Google Scholar 

  120. Pu L, Liu Y, Li L, Zhang C, Ma P, Dong W, Huang Y, Liu T (2021) Polyimide nanofiber-reinforced Ti3C2Tx aerogel with “Lamella-Pillar” microporosity for high-performance piezoresistive strain sensing and electromagnetic wave absorption. ACS Appl Mater Interfaces 13:47134–47146

    Article  CAS  PubMed  Google Scholar 

  121. Huang T, Long Y, Dong Z, Hua Q, Niu J, Dai X, Wang J, Xiao J, Zhai J, Hu W (2022) Ultralight, elastic, hybrid aerogel for flexible/wearable piezoresistive sensor and solid-solid/gas-solid coupled triboelectric nanogenerator. Adv Sci 9:e2204519

    Article  Google Scholar 

  122. Chen Z, Zhuo H, Hu Y, Lai H, Liu L, Zhong L, Peng X (2020) Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Adv Funct Mater 30:1910292

    Article  CAS  Google Scholar 

  123. Chen X, Liu H, Zheng Y, Zhai Y, Liu X, Liu C, Mi L, Guo Z, Shen C (2019) Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor. ACS Appl Mater Interfaces 11:42594–42606

    Article  CAS  PubMed  Google Scholar 

  124. Wu H, Chen H, Yao P, Wang R (2021) Stretchable and highly sensitive strain sensor based on conductive polymer aerogel for human physiological information detection. Nano Select 2:802–809

    Article  Google Scholar 

  125. Zhao S, Malfait WJ, Guerrero-Alburquerque N, Koebel MM, Nyström G (2018) Biopolymer aerogels and foams: chemistry, properties, and applications. Angew Chem Int Ed 57:7580–7608

    Article  CAS  Google Scholar 

  126. Yang J, Li Y, Zheng Y, Xu Y, Zheng Z, Chen X, Liu W (2019) Versatile aerogels for sensors. Small 15:e1902826

    Article  PubMed  Google Scholar 

  127. Zhuo H, Hu Y, Tong X, Chen Z, Zhong L, Lai H, Liu L, Jing S, Liu Q, Liu C, Peng X, Sun R (2018) A supercompressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle. Adv Mater 30:e1706705

    Article  PubMed  Google Scholar 

  128. Zou J, Liu J, Karakoti AS, Kumar A, Joung D, Li Q, Khondaker SI, Seal S, Zhai L (2010) Ultralight multiwalled carbon nanotube aerogel. ACS Nano 4:7293–7302

    Article  CAS  PubMed  Google Scholar 

  129. Li Y, Chen Y, He X, Xiang Z, Heinze T, Qi H (2022) Lignocellulose nanofibril/gelatin/MXene composite aerogel with fire-warning properties for enhanced electromagnetic interference shielding performance. Chem Eng J 431:133907

    Article  CAS  Google Scholar 

  130. Zhang H, Zhang M, Li J, Bai Y, Tan X (2022) Preparation of novel composite aerogel with conductive and antibacterial via constructing three-dimensional crosslinked structure. React Funct Polym 178:105361

    Article  CAS  Google Scholar 

  131. Lv L, Cao C, Qu Y, Zhang G, Zhao L, Cao K, Song P, Tang L (2022) Smart fire-warning materials and sensors: design principle, performances, and applications. Mater Sci Eng R 150:100690

    Article  Google Scholar 

  132. Wu J, Fan X, Liu X, Ji X, Shi X, Wu W, Yue Z, Liang J (2022) Highly sensitive temperature-pressure bimodal aerogel with stimulus discriminability for human physiological monitoring. Nano Lett 22:4459–4467

    Article  CAS  PubMed  Google Scholar 

  133. Salehi MH, Golbaten-Mofrad H, Jafari SH, Goodarzi V, Entezari M, Hashemi M, Zamanlui S (2021) Electrically conductive biocompatible composite aerogel based on nanofibrillated template of bacterial cellulose/polyaniline/nano-clay. Int J Biol Macromol 173:467–480

    Article  CAS  PubMed  Google Scholar 

  134. Wang L, Zhang M, Yang B, Tan J, Ding X (2020) Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 14:10633–10647

    Article  CAS  PubMed  Google Scholar 

  135. Xu H, Chen W, Wang C, Jia T, Wang D, Li G, Zhao D, Cui B, Fan Z, Fan X, Zhang H, Gan T, Xing H, Zhao L, Liu C (2023) Ultralight and flexible silver nanoparticle-wrapped “scorpion pectine-like” polyimide hybrid aerogels as sensitive pressor sensors with wide temperature range and consistent conductivity response. Chem Eng J 453:139647

    Article  CAS  Google Scholar 

  136. Zhang S, Wang J, Lu K, Xu G, Wang Z, Xiao Y, Ji H, Yang Z, Yang Y, Xiong S, Li Z (2022) Polybenzoxazine aerogels for thermal protection at extremely high-temperature/cryogenic conditions. Polymer 261:125424

    Article  CAS  Google Scholar 

  137. Yan M, Fu Y, Pan Y, Cheng X, Gong L, Zhou Y, Ahmed H, Zhang H (2022) Highly elastic and fatigue resistant wood/silica composite aerogel operated at extremely low temperature. Compos B Eng 230:109496

    Article  CAS  Google Scholar 

  138. Wang J, Yue X, Li X, Dong J, Zhang Q, Zhao X (2022) Lightweight and elastic silver nanowire/PEDOT:PSS/polyimide aerogels for piezoresistive sensors. ACS Appl Polym Mater 4:3205–3216

    Article  CAS  Google Scholar 

  139. Rr AM, Liu Y, Liu C, Schafer KH, Saumer M, Yang G (2019) Carbon nanotube-reinforced poly(4-vinylaniline)/polyaniline bilayer-grafted bacterial cellulose for bioelectronic applications. ACS Biomater Sci Eng 5:2160–2172

    Article  Google Scholar 

  140. Yang J, Li X, Han S, Yang R, Min P, Yu ZZ (2018) High-quality graphene aerogels for thermally conductive phase change composites with excellent shape stability. J Mater Chem A 6:5880–5886

    Article  CAS  Google Scholar 

  141. Pinto SC, Goncalves G, Sandoval S, Lopez-Periago AM, Borras A, Domingo C, Tobias G, Duarte I, Vicente R, Marques P (2020) Bacterial cellulose/graphene oxide aerogels with enhanced dimensional and thermal stability. Carbohydr Polym 230:115598

    Article  CAS  PubMed  Google Scholar 

  142. Zhao Y, Tian M, Huang P (2021) Starch/clay aerogel reinforced by cellulose nanofibrils for thermal insulation. Cellulose 28:3505–3513

    Article  CAS  Google Scholar 

  143. Madyan OA, Fan M, Feo L, Hui D (2016) Physical properties of clay aerogel composites: an overview. Compos Part B 102:29–37

    Article  CAS  Google Scholar 

  144. Bai Z, Zhang H, Zhu H, Jiang J, Zhang D, Yu Y, Quan F (2023) PVA/sodium alginate multi-network aerogel fibers, incorporated with PEG and ZnO, exhibit enhanced temperature regulation, antibacterial, thermal conductivity, and thermal stability. Carbohydr Polym 317:121037

    Article  CAS  PubMed  Google Scholar 

  145. Long X, Wu X, Wei X, Yu J, Wang S, Zhou L, Liao J (2023) SiO2 nanostructure-based aerogels with high strength and deformability for thermal insulation. ACS Appl Nano Mater 6:14393–14400

    Article  CAS  Google Scholar 

  146. Zhang J, Zhou X, Huang X, Hao L, Zhi Q, Li Z, Hou B, Yang J, Wang B, Ishizaki K (2019) Biomorphic cellular silicon carbide nanocrystal-based ceramics derived from wood for use as thermally stable and lightweight structural materials. ACS Appl Nano Mater 2:7051–7060

    Article  CAS  Google Scholar 

  147. Cai Z, Su L, Wang H, Niu M, Tao L, Lu D, Xu L, Li M, Gao H (2021) Alternating multilayered Si(3)N(4)/SiC aerogels for broadband and high-temperature electromagnetic wave absorption up to 1000 °C. ACS Appl Mater Interfaces 13:16704–16712

    Article  CAS  PubMed  Google Scholar 

  148. Yan M, Cheng X, Shi L, Pan Y, He P, Zhang Z, Lun Z, Fu Y, Zhang H (2023) Bioinspired SiC aerogels for super thermal insulation and adsorption with super-elasticity over 100,000 times compressions. Chem Eng J 455:140616

    Article  CAS  Google Scholar 

  149. Su L, Wang H, Niu M, Fan X, Ma M, Shi Z, Guo SW (2018) Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel. ACS Nano 12:3103–3111

    Article  CAS  PubMed  Google Scholar 

  150. Ren J, Huang X, Han R, Chen G, Zhou Z, Li Q (2023) An extreme condition-resistant superelastic silica nanofiber/MXene composite aerogel for synchronous sensing and thermal management. J Mater Chem A 11:10396–10412

    Article  CAS  Google Scholar 

  151. Sun X, Zhu W, Wang H, Yan X, Su D (2023) In situ formation of the TiCN phase in SiBCN ceramic aerogels enabling superior thermal and structural stability up to 1800 °C. ACS Appl Mater Interfaces 15:12221–12231

    Article  CAS  PubMed  Google Scholar 

  152. Cahill JT, Turner S, Ye J, Shevitski B, Aloni S, Baumann TF, Zettl A, Kuntz JD, Worsley MA (2019) Ultrahigh-temperature ceramic aerogels. Chem Mater 31:3700–3704

    Article  CAS  Google Scholar 

  153. Xu X, Zhang Q, Hao M, Hu Y, Lin Z, Peng L, Wang T, Ren X, Wang C, Zhao Z, Wan C, Fei H, Wang L, Zhu J, Sun H, Chen W, Du T, Deng B, Cheng GJ, Shakir I, Dames C, Fisher TS, Zhang X, Li H, Huang Y, Duan X (2019) Double-negative-index ceramic aerogels for thermal superinsulation. Science 363:723–727

    Article  CAS  PubMed  Google Scholar 

  154. Wang C, Pan ZZ, Lv W, Liu B, Wei J, Lv X, Luo Y, Nishihara H, Yang QH (2019) A directional strain sensor based on anisotropic microhoneycomb cellulose nanofiber-carbon nanotube hybrid aerogels prepared by unidirectional freeze drying. Small 15:e1805363

    Article  PubMed  Google Scholar 

  155. Xue Y, Dai P, Zhou M, Wang X, Pakdel A, Zhang C, Weng Q, Takei T, Fu X, Popov ZI, Sorokin PB, Tang C, Shimamura K, Bando Y, Golberg D (2017) Multifunctional superelastic foam-like boron nitride nanotubular cellular-network architectures. ACS Nano 11:558–568

    Article  CAS  PubMed  Google Scholar 

  156. Yang Y, Chen Z, Lv T, Dong K, Liu Y, Qi Y, Cao S, Chen T (2023) Ultrafast self-assembly of supramolecular hydrogels toward novel flame-retardant separator for safe lithium ion battery. J Colloid Interface Sci 649:591–600

    Article  CAS  PubMed  Google Scholar 

  157. Zhao C, Qiao F, Ji J, Deng S, Qi H (2023) Thermally insulating SiO2/psa composite aerogels with heat resistance and mechanical properties via the Thiol–Yne click reaction. Langmuir 39:9468–9475

    Article  CAS  PubMed  Google Scholar 

  158. Guzel Kaya G, Yilmaz E, Deveci H (2020) Synthesis of sustainable silica xerogels/aerogels using inexpensive steel slag and bean pod ash: a comparison study. Adv Powder Technol 31:926–936

    Article  CAS  Google Scholar 

  159. Zhao Z, Cui Y, Kong Y, Ren J, Jiang X, Yan W, Li M, Tang J, Liu X, Shen X (2021) Thermal and mechanical performances of the superflexible, hydrophobic, silica-based aerogel for thermal insulation at ultralow temperature. ACS Appl Mater Interfaces 13:21286–21298

    Article  CAS  PubMed  Google Scholar 

  160. Luo Z, Ning H, Zhou X, Yuan B (2022) Efficient flame-retardant biomass aerogel endowed with graphene oxide interconnected networks for ultrasensitive fire warning. Mater Lett 318:132237

    Article  CAS  Google Scholar 

  161. Chen J, Xie H, Lai X, Li H, Gao J, Zeng X (2020) An ultrasensitive fire-warning chitosan/montmorillonite/carbon nanotube composite aerogel with high fire-resistance. Chem Eng J 399:125729

    Article  CAS  Google Scholar 

  162. He H, Liu J, Wang Y, Zhao Y, Qin Y, Zhu Z, Yu Z, Wang J (2022) An ultralight self-powered fire alarm E-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 16:2953–2967

    Article  CAS  PubMed  Google Scholar 

  163. Wang Y, Liu J, Zhao Y, Qin Y, Zhu Z, Yu Z, He H (2022) Temperature-triggered fire warning PEG@wood powder/carbon nanotube/calcium alginate composite aerogel and the application for firefighting clothing. Compos B Eng 247:110348

    Article  CAS  Google Scholar 

  164. Wang S, Ning H, Liu F, Hu N, Zhang H, Zou R, Wen J, Huang K, Wu X, Song Z, Xiang C, Wang Z (2022) Wearable multifunctional graphene-based aerogel/spacer fabric composites for sensing and impact protection. Adv Mater Technol 7:2200010

    Article  CAS  Google Scholar 

  165. He X, Feng Y, Xu F, Chen F, Yu Y (2022) Smart fire alarm systems for rapid early fire warning: advances and challenges. Chem Eng J 450:137927

    Article  CAS  Google Scholar 

  166. Zuo B, Yuan B (2021) Flame-retardant cellulose nanofiber aerogel modified with graphene oxide and sodium montmorillonite and its fire-alarm application. Polym Adv Technol 32:1877–1887

    Article  CAS  Google Scholar 

  167. Zhang M, Wang M, Zhang M, Yang C, Li Y, Zhang Y, Hu J, Wu G (2019) Flexible and thermally induced switchable fire alarm fabric based on layer-by-layer self-assembled silver sheet/Fe3O4 nanowire composite. ACS Appl Mater Interfaces 11:47456–47467

    Article  CAS  PubMed  Google Scholar 

  168. Ding M, Ma W, Liu P, Yang J, Lan K, Xu D (2023) Creating aligned porous structure with cobweb-like cellulose nanofibrils in MXene composite aerogel for solar-thermal desalination and humidity response. Chem Eng J 459:141604

    Article  CAS  Google Scholar 

  169. Jin G, Sun M, Gao Y, Zhou X, Wei C, Lyu L (2023) A CNFs/MWCNTs aerogel film-based humidity sensor with directionally aligned porous structure for substantially enhancing both sensitivity and response speed. Chem Eng J 473:145304

    Article  CAS  Google Scholar 

  170. Liu C, Chen S, Xu L, Huang H, Zhong G, Li Z (2020) Humidity sensitive cellulose composite aerogels with enhanced mechanical performance. Cellulose 27:6287–6297

    Article  CAS  Google Scholar 

  171. Ali I, Chen L, Huang Y, Song L, Lu X, Liu B, Zhang L, Zhang J, Hou L, Chen T (2018) Humidity-responsive gold aerogel for real-time monitoring of human breath. Langmuir 34:4908–4913

    Article  CAS  PubMed  Google Scholar 

  172. Wang Y, Hou S, Li T, Jin S, Shao Y, Yang H, Wu D, Dai S, Lu Y, Chen S, Huang J (2020) Flexible capacitive humidity sensors based on ionic conductive wood-derived cellulose nanopapers. ACS Appl Mater Interfaces 12:41896–41904

    Article  CAS  PubMed  Google Scholar 

  173. Xiaoqiang L, Qian S, Yan K, Yanan Z, Zengyuan P, Yang J, Mengjuan L, Chronakis IS (2020) Self-powered humidity sensor based on polypyrrole modified melamine aerogel. Mater Lett 277:128281

    Article  CAS  Google Scholar 

  174. Poonam SK, Arora A, Tripathi SK (2019) Review of supercapacitors: materials and devices. J Energy Storage 21:801–825

    Article  Google Scholar 

  175. Raza W, Ali F, Raza N, Luo Y, Kim K, Yang J, Kumar S, Mehmood A, Kwon EE (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473

    Article  CAS  Google Scholar 

  176. Zhou C, Li M, Ding J, Wang H, Zhao Y, Huang Z, Fan L, Liu G, Sun C, Xu W (2023) Superdispersed NiCo2S4 nanoparticles anchored on layered C3N4 for high performance supercapacitor. J Alloys Compd 934:167875

    Article  CAS  Google Scholar 

  177. Ding J, Zhao W, Liu S, Wang H, Mu Q, Huang Z, Zhao Y, Liu G, Wang L, Xu W (2023) FeCo2O4@PC as the electrode material for enhanced electrochemical performance of supercapacitors. Diam Relat Mater 131:109584

    Article  CAS  Google Scholar 

  178. Ma X, Wang S, Wang H, Ding J, Liu S, Huang Z, Sun W, Liu G, Wang L, Xu W (2022) Construction of high-performance asymmetric supercapacitor based on FeCo-LDH@C3N4 composite electrode material with penetrating structure. J Energy Storage 56:106034

    Article  Google Scholar 

  179. Zhang C, Wang H, Gao Y, Wan C (2022) Cellulose-derived carbon aerogels: a novel porous platform for supercapacitor electrodes. Mater Des 219:110778

    Article  CAS  Google Scholar 

  180. Xiong C, Zhang Y, Ni Y (2023) Recent progress on development of electrolyte and aerogel electrodes applied in supercapacitors. J Power Sources 560:232698

    Article  CAS  Google Scholar 

  181. Nargatti KI, Subhedar AR, Ahankari SS, Grace AN, Dufresne A (2022) Nanocellulose-based aerogel electrodes for supercapacitors: a review. Carbohydr Polym 297:120039

    Article  CAS  PubMed  Google Scholar 

  182. Jiang H, Wang S, Zhang B, Shao Y, Wu Y, Zhao H, Lei Y, Hao X (2020) High performance lithium-ion capacitors based on LiNbO3-arched 3D graphene aerogel anode and BCNNT cathode with enhanced kinetics match. Chem Eng J 396:125207

    Article  CAS  Google Scholar 

  183. Zou X, Li P, Zhao Z, Wu Y, Ma D, Song Y, Wang J (2023) Optimization of electrochemical performance for double network electrically conductive aerogel-based supercapacitor electrode. J Electroanal Chem 941:117554

    Article  CAS  Google Scholar 

  184. Fan Y-M, Song W-L, Li X, Fan L-Z (2017) Assembly of graphene aerogels into the 3D biomass-derived carbon frameworks on conductive substrates for flexible supercapacitors. Carbon 111:658–666

    Article  CAS  Google Scholar 

  185. Dong Z, Zhong L, Zhang Y, Liu F, Huang H, Xu Z (2023) Construction of multifunctional cellulose nanofibers/reduced graphene oxide carbon aerogels by bidirectional freezing for supercapacitor electrodes and strain sensors. Diam Relat Mater 140:110555

    Article  CAS  Google Scholar 

  186. Xu H, Hu Q, Zhao T, Zhu J, Lian Z, Jin X (2024) Sodium Carboxymethylcellulose/MXene/zeolite imidazolium framework-67-derived 3D porous carbon aerogel for high-performance asymmetric supercapacitors. Carbohydr Polym 326:121641

    Article  CAS  PubMed  Google Scholar 

  187. Xiang X, Deng Z, Zhang H, Gao C, Feng S, Liu Z, Liang Q, Fu Y, Liu Y, Liu K (2023) Polyaniline/polydopamine-regulated nitrogen-doped graphene aerogel with well-developed mesoporous structure for supercapacitor electrode. Chem Eng J 477:147211

    Article  CAS  Google Scholar 

  188. Gao Y, Zheng S, Fu H, Ma J, Xu X, Guan L, Wu H, Wu Z-S (2020) Three-dimensional nitrogen doped hierarchically porous carbon aerogels with ultrahigh specific surface area for high-performance supercapacitors and flexible micro-supercapacitors. Carbon 168:701–709

    Article  CAS  Google Scholar 

  189. Barim SB, Raptapoulos G, Rommel S, Aindow M, Paraskevopoulou P, Erkey C (2022) Polyamide aerogel-derived N-doped carbon aerogel decorated with platinum nanoparticles as highly active and stable electrocatalysts for oxygen reduction reaction. Electrochim Acta 434:141251

    Article  CAS  Google Scholar 

  190. Wang X, Zhang Z, Gai H, Chen Z, Sun Z, Huang M (2020) An efficient pH-universal electrocatalyst for oxygen reduction: defect-rich graphitized carbon shell wrapped cobalt within hierarchical porous N-doped carbon aerogel. Mater Today Energy 17:100452

    Article  Google Scholar 

  191. Borges Honorato AM, Khalid M, Dai Q, Pessan LA (2020) Nitrogen and sulfur Co-doped fibrous-like carbon electrocatalyst derived from conductive polymers for highly active oxygen reduction catalysis. Synth Met 264:116383

    Article  CAS  Google Scholar 

  192. Liang H, Wu Z, Chen L, Li C, Yu S (2015) Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc–air battery. Nano Energy 11:366–376

    Article  CAS  Google Scholar 

  193. Chen IP, Hsiao CH, Huang JY, Peng YH, Chang CY (2019) Highly efficient hydrogen evolution from seawater by biofunctionalized exfoliated MoS2 quantum dot aerogel electrocatalysts that is superior to Pt. ACS Appl Mater Interfaces 11:14159–14165

    Article  CAS  PubMed  Google Scholar 

  194. Su W, Wang P, Cai Z, Yang J, Wang X (2019) One-pot hydrothermal synthesis of Al-doped MoS2@graphene aerogel nanocomposite electrocatalysts for enhanced hydrogen evolution reaction. Results Phys 12:250–258

    Article  Google Scholar 

  195. Zhang Y, Zuo L, Zhang L, Huang Y, Lu H, Fan W, Liu T (2016) Cotton wool derived carbon fiber aerogel supported few-layered MoSe2 nanosheets as efficient electrocatalysts for hydrogen evolution. ACS Appl Mater Interfaces 8:7077–7085

    Article  CAS  PubMed  Google Scholar 

  196. Wei W, Li H, Sun W, Wang J, Fan X, Jiang G, Jiang Z, Xie J (2020) NiCoP nanoparticles encapsulated in cross-linked graphene aerogel to efficient hydrogen evolution reaction. J Mater Sci Mater Electron 31:13521–13530

    Article  CAS  Google Scholar 

  197. Lu R, Sam DK, Wang W, Gong S, Liu J, Durairaj A, Li M, Lv X (2022) Boron, nitrogen Co-doped biomass-derived carbon aerogel embedded nickel–cobalt–iron nanoparticles as a promising electrocatalyst for oxygen evolution reaction. J Colloid Interface Sci 613:126–135

    Article  CAS  PubMed  Google Scholar 

  198. Tang X, Wang Y, Wang C, Yuan L, Yi Y (2023) Pt-Bi on carbon aerogels as efficient electrocatalysts for ethanol oxidation reaction in alkaline medium. J Alloys Compd 938:168398

    Article  CAS  Google Scholar 

  199. Yang L, Li G, Ma R, Hou S, Chang J, Ruan M, Cai W, Jin Z, Xu W, Wang G, Ge J, Liu C, Xing W (2021) Nanocluster PtNiP supported on graphene as an efficient electrocatalyst for methanol oxidation reaction. Nano Res 14:2853–2860

    Article  CAS  Google Scholar 

  200. Hui B, Chen H, Zhou C, Cai L, Zhang K, Quan F, Yang D (2022) Biochar aerogel-based electrocatalyst towards efficient oxygen evolution in acidic media. Biochar 4:39

    Article  CAS  Google Scholar 

  201. Ding X, Li M, Jin J, Huang X, Wu X, Feng L (2022) Graphene aerogel supported Pt–Ni alloy as efficient electrocatalysts for alcohol fuel oxidation. Chin Chem Lett 33:2687–2691

    Article  CAS  Google Scholar 

  202. Zhu L, Zhang R, Liu X, Zhu J, Guo Z, Zhao Y (2022) Laser-assisted synthesis of Bi-decorated Pt aerogel for efficient methanol oxidation electrocatalysis. Appl Surf Sci 592:153219

    Article  CAS  Google Scholar 

  203. Zhang B, Wang H, Zuo Z, Wang H, Zhang J (2018) Tunable CoFe-based active sites on 3D heteroatom doped graphene aerogel electrocatalysts via annealing gas regulation for efficient water splitting. J Mater Chem A 6:15728–15737

    Article  CAS  Google Scholar 

  204. Yang P, Wang L, Xiong Y, Xiao F, Wang Y, Zhao M, Wang S, Tang W, He P, Jia B (2023) Modulated amorphous Fe–Ni–P nanosphere chains anchored on graphene aerogel grafted nickel foam: high-performance electrocatalyst for oxygen evolution reaction. Int J Hydrog Energy 48:5042–5052

    Article  CAS  Google Scholar 

  205. Yan S, Liao W, Zhong M, Li W, Wang C, Pinna N, Chen W, Lu X (2022) Partially oxidized ruthenium aerogel as highly active bifunctional electrocatalyst for overall water splitting in both alkaline and acidic media. Appl Catal B 307:121199

    Article  CAS  Google Scholar 

  206. Gu Y, Chen S, Ren J, Jia YA, Chen C, Komarneni S, Yang D, Yao X (2018) Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting. ACS Nano 12:245–253

    Article  CAS  PubMed  Google Scholar 

  207. Wang Y, Chen L, Zhang J, Xia S, Cai R, Wang J, Yu C, Zhang Y, Wu J, Wu Y (2022) Confined synthesis of well-dispersed NiCo2S4 nanowires on nitrogen-doped reduced graphene oxide aerogel for efficient electrocatalytic overall water splitting. J Electroanal Chem 927:116969

    Article  CAS  Google Scholar 

  208. Zhang G, Xing J, Zhao Y, Yang F (2021) Hierarchical N, P co-doped graphene aerogels framework assembling vertically grown CoMn-LDH nanosheets as efficient bifunctional electrocatalyst for rechargeable zinc–air battery. J Colloid Interface Sci 590:476–486

    Article  CAS  PubMed  Google Scholar 

  209. Shinde SS, Lee CH, Yu JY, Kim DH, Lee SU, Lee JH (2018) Hierarchically designed 3D holey C2N aerogels as bifunctional oxygen electrodes for flexible and rechargeable Zn–air batteries. ACS Nano 12:596–608

    Article  CAS  PubMed  Google Scholar 

  210. Hsieh T-C, Tsou Y-H, Chen J-S (2019) Iron phthalocyanine supported on 3D nitrogen-doped graphene aerogel as an electrocatalyst for non-aqueous Li−O2 Batteries. Electrochim Acta 295:490–497

    Article  CAS  Google Scholar 

  211. Ma S, Jia T, Wang C, Xu H, Zhou H, Zhao X, Chen C, Wang D, Liu C, Qu C (2022) Anisotropic MWCNT/polyimide aerogels with multifunctional EMI shielding and strain sensing capabilities. Compos Part A 163:107208

    Article  CAS  Google Scholar 

  212. Tang S, Zhang X, Fan J, Li B, Li Z, Wang C, Li H, Zhang P, Zhou J (2022) Fibrillation of well-formed conductive aerogel for soft conductors. Appl Mater Today 26:101399

    Article  Google Scholar 

  213. Tian Y, Han J, Yang J, Wu H, Bai H (2021) A highly sensitive graphene aerogel pressure sensor inspired by fluffy spider leg. Adv Mater Interfaces 8:2100511

    Article  CAS  Google Scholar 

  214. Xu Q, Chang X, Zhu Z, Xu L, Chen X, Luo L, Liu X, Qin J (2021) Flexible pressure sensors with high pressure sensitivity and low detection limit using a unique honeycomb-designed polyimide/reduced graphene oxide composite aerogel. RSC Adv 11:11760–11770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Cheng Y, Zhu W, Lu X, Wang C (2022) Lightweight and flexible MXene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing. Nano Energy 98:107229

    Article  CAS  Google Scholar 

  216. Wang Z, Chen C, Fang L, Cao B, Tu X, Zhang R, Dong K, Lai Y, Wang P (2023) Biodegradable, conductive, moisture-proof, and dielectric enhanced cellulose-based triboelectric nanogenerator for self-powered human-machine interface sensing. Nano Energy 107:108151

    Article  CAS  Google Scholar 

  217. Qin Z, Chen X, Lv Y, Zhao B, Fang X, Pan K (2023) Wearable and high-performance piezoresistive sensor based on nanofiber/sodium alginate synergistically enhanced MXene composite aerogel. Chem Eng J 451:138586

    Article  CAS  Google Scholar 

  218. Wei L, Wu Z, Tang S, Qin X, Xiong Y, Li J, Ruiz-Hitzky E, Wang X (2023) Tracheid-inspired nanoarchitectured carbon-based aerogels with ultra-compressibility for wearable piezoresistive sensors. Carbon 203:386–396

    Article  CAS  Google Scholar 

  219. Hodlur RM, Rabinal MK (2014) Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite. Compos Sci Technol 90:160–165

    Article  CAS  Google Scholar 

  220. Wu X, Han Y, Zhang X, Lu C (2017) Spirally structured conductive composites for highly stretchable, robust conductors and sensors. ACS Appl Mater Interfaces 9:23007–23016

    Article  CAS  PubMed  Google Scholar 

  221. Ma W, Jiang Z, Lu T, Xiong R, Huang C (2022) Lightweight, elastic and superhydrophobic multifunctional nanofibrous aerogel for self-cleaning, oil/water separation and pressure sensing. Chem Eng J 430:1132989

    Article  Google Scholar 

  222. Huang C, Wang Y, Cheng Y, Qi Z, Liu A, Deng Q, Hu N (2022) Naturally dried superelastic bioinspired graphene aerogel for pressure/stretch sensing and separation. Compos Sci Technol 226:109549

    Article  CAS  Google Scholar 

  223. Kurup LA, Cole CM, Arthur JN, Yambem SD (2022) Graphene porous foams for capacitive pressure sensing. ACS Appl Nano Mater 5:2973–2983

    Article  CAS  Google Scholar 

  224. Kim S, Shin H, Lee J, Park C, Ahn Y, Cho H-J, Yuk S, Kim J, Lee D, Kim I-D (2023) Three-dimensional MoS2/MXene heterostructure aerogel for chemical gas sensors with superior sensitivity and stability. ACS Nano 17:19387–19397

    Article  CAS  PubMed  Google Scholar 

  225. Luo R, Cui Y, Li H, Wu Y, Du B, Zhou S, Hu J (2023) Fragmented graphene aerogel/polydimethylsiloxane sponges for wearable piezoresistive pressure sensors. ACS Appl Nano Mater 6:7065–7076

    Article  CAS  Google Scholar 

  226. Cheng L, Qian W, Wei L, Zhang H, Zhao T, Li M, Liu A, Wu H (2020) A highly sensitive piezoresistive sensor with interlocked graphene microarrays for meticulous monitoring of human motions. J Mater Chem C 8:11525–11531

    Article  CAS  Google Scholar 

  227. Sun S, Cheng Q, Chen Z, Zheng J, Liu R, Liu Z, Wang Y, Zheng L (2023) A shape-adaptable and highly resilient aerogel assembled by poly(vinylidene fluoride) nanofibers for self-powered sensing. Nano Energy 116:108820

    Article  CAS  Google Scholar 

  228. Zhu X, Wan T, Chen M, Wang S, Zhang Y, Yuan G, Liu X, Cheng B (2023) Micro-wrinkled rGO/PU aerogel as flexible strain sensor preparing for motion detection and voice recognition. J Alloy Compd 954:170185

    Article  CAS  Google Scholar 

  229. Guo X, Xing T, Feng J (2022) Simultaneously stretchable and compressible flexible strain sensors based on carbon nanotube composites for motion monitoring and human-computer interactions. ACS Appl Nano Mater 5:18427–18437

    Article  CAS  Google Scholar 

  230. Chen F, Liao Y, Wei S, Zhou H, Wu Y, Qing Y, Li L, Luo S, Tian C, Wu Y (2023) Wood-inspired elastic and conductive cellulose aerogel with anisotropic tubular and multilayered structure for wearable pressure sensors and supercapacitors. Int J Biol Macromol 250:126197

    Article  CAS  PubMed  Google Scholar 

  231. Toivonen MS, Kaskela A, Rojas OJ, Kauppinen EI, Ikkala O (2015) Ambient-dried cellulose nanofibril aerogel membranes with high tensile strength and their use for aerosol collection and templates for transparent, flexible devices. Adv Funct Mater 25:6618–6626

    Article  CAS  Google Scholar 

  232. Lin W, Wu S, Han S, Xie J, He H, Zou Q, Xu D, Ning D, Mondal AK, Huang F (2023) Preparation and characterization of highly conductive lignin aerogel based on tunicate nanocellulose framework. Int J Biol Macromol 242:125010

    Article  CAS  PubMed  Google Scholar 

  233. Wu Y, Yan Z, Wang T, Wang J, Wang T, Hu Z, Ao Y, Wang Y, Li M (2023) Cellulose nanofibers/PEDOT:PSS conductive aerogel for pressure sensing prepared by a facile freeze-drying method. ACS Appl Polym Mater 5:3938–3948

    Article  CAS  Google Scholar 

  234. Xue J, Han R, Li Y, Zhang J, Liu J, Yang Y (2023) Advances in multiple reinforcement strategies and applications for silica aerogel. J Mater Sci 58:14255–14283

    Article  CAS  Google Scholar 

  235. Gao Q, Qin J, Guo B, Fan X, Wang F, Zhang Y, Xiao R, Huang F, Shi X, Zhang G (2021) High-performance electromagnetic interference shielding epoxy/Ag nanowire/thermal annealed graphene aerogel composite with bicontinuous three-dimensional conductive skeleton. Compos Part A 151:106648

    Article  CAS  Google Scholar 

  236. Li Y-Q, Samad YA, Polychronopoulou K, Liao K (2015) Lightweight and highly conductive aerogel-like carbon from sugarcane with superior mechanical and EMI shielding properties. ACS Sustain Chem Eng 3:1419–1427

    Article  CAS  Google Scholar 

  237. Li M, Han F, Jiang S, Zhang M, Xu Q, Zhu J, Ge A, Liu L (2021) Lightweight cellulose nanofibril/reduced graphene oxide aerogels with unidirectional pores for efficient electromagnetic interference shielding. Adv Mater Interfaces 8:2101437

    Article  CAS  Google Scholar 

  238. Wang M, Zhang S, Zhou Z, Zhu J, Gao J, Dai K, Huang H, Li Z (2021) Facile heteroatom doping of biomass-derived carbon aerogels with hierarchically porous architecture and hybrid conductive network: towards high electromagnetic interference shielding effectiveness and high absorption coefficient. Compos B Eng 224:109175

    Article  CAS  Google Scholar 

  239. Li C, Li Y, Zhao Q, Luo Y, Yang G, Hu Y, Jiang J (2020) Electromagnetic interference shielding of graphene aerogel with layered microstructure fabricated via mechanical compression. ACS Appl Mater Interfaces 12:30686–30694

    Article  CAS  PubMed  Google Scholar 

  240. Guo Z, Ren P, Wang J, Hou X, Tang J, Liu Z, Chen Z, Jin Y, Ren F (2023) Methylene blue adsorption derived thermal insulating N, S-co-doped TiC/carbon hybrid aerogel for high-efficient absorption-dominant electromagnetic interference shielding. Chem Eng J 451:138667

    Article  CAS  Google Scholar 

  241. Zheng X, Tang J, Wang P, Wang Z, Zou L, Li C (2022) Interfused core–shell heterogeneous graphene/MXene fiber aerogel for high-performance and durable electromagnetic interference shielding. J Colloid Interface Sci 628:994–1003

    Article  CAS  PubMed  Google Scholar 

  242. Zhou Z, Liu J, Zhang X, Tian D, Zhan Z, Lu C (2019) Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv Mater Interfaces 6:1802040

    Article  Google Scholar 

  243. Narayanan AP, Surendran KP (2022) Acid polymerized V2O5-PANI aerogels with outstanding specific shielding effectiveness in X, Ku and K bands. J Ind Eng Chem 116:159–170

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (22102067), Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing (Yantai) (AMGM2023F12), Natural Science Foundation of Shandong Province (ZR2022MB071) and Youth Innovation Technology Support Program of Universities in Shandong Province (2023KJ213).

Author information

Authors and Affiliations

Authors

Contributions

Zongzheng Zhang helped in conceptualization and writing—original draft; Puying Wang, Weining Zhang, Xiaohan Hu, Xin Zhang and Zhimin Gou investigated the study; Wenlong Xu was involved in methodology, supervision, funding acquisition, writing—review & editing; Hui Zheng helped in supervision and funding acquisition; Xiuchen Ding supervised the study.

Corresponding authors

Correspondence to Wenlong Xu, Hui Zheng or Xiuchen Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wang, P., Zhang, W. et al. A review: recent advances in conductive aerogels: assembly strategies, conductive mechanisms, influencing factors and applications. J Mater Sci 59, 4431–4460 (2024). https://doi.org/10.1007/s10853-024-09531-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09531-6

Navigation