Skip to main content
Log in

Strain-rate sensitivity maps and the estimation of ductility for low temperature superplasticity

  • Processing Bulk Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The ability of a material to stretch in tension is strongly influenced by the strain rate sensitivity and this parameter plays an even bigger role during deformation of ultrafine and nanocrystalline materials. It was recently shown that a deformation mechanism based on grain boundary sliding can predict the strain rate sensitivity of these materials and the conditions for superplastic elongations. However, other strengthening mechanisms must be taken into account when evaluating the low temperature deformation behavior. The present study advances in this topic by considering two mechanisms to estimate the relationship between the flow stress and the strain rate. The model of grain boundary sliding is used to estimate the grain size strengthening and a general thermally activated mechanism is used to estimate the other strengthening mechanisms. The procedure is validated by hundreds of data points from the literature for different materials with different grain sizes and tested at different temperatures and strain rates. By considering this model, strain rate sensitivity maps are designed and predict the deformation conditions for high ductilities. These maps are further validated by comparing the elongations reported in the literature to the predicted strain rate sensitivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data and code availability

The raw/processed data required to reproduce these findings can be shared upon reasonable request.

References

  1. Dieter GE, Mechanical Metallurgy. McGraw-Hill Book Company, London

  2. Hutchinson JW, Neale KW (1977) Influence of strain-rate sensitivity on necking under uniaxial tension. Acta Metall 25:839–846. https://doi.org/10.1016/0001-6160(77)90168-7

    Article  CAS  Google Scholar 

  3. Hart EW (1967) Theory of the tensile test. Acta Metall 15:351–355. https://doi.org/10.1016/0001-6160(67)90211-8

    Article  CAS  Google Scholar 

  4. Ghosh AK (1977) The influence of strain hardening and strain-rate sensitivity on sheet metal forming. J Eng Mater Technol 99:264–274. https://doi.org/10.1115/1.3443530

    Article  CAS  Google Scholar 

  5. Mohamed FA, Langdon TG (1981) Flow localization and neck formation in a superplastic metal. Acta Metall 29:911–920. https://doi.org/10.1016/0001-6160(81)90133-4

    Article  CAS  Google Scholar 

  6. Chinh NQ, Rácz G, Gubicza J, Valiev RZ, Langdon TG (2019) A possible stabilizing effect of work hardening on the tensile performance of superplastic materials. Mater Sci Eng A 759:448–454. https://doi.org/10.1016/j.msea.2019.05.063

    Article  CAS  Google Scholar 

  7. Kawasaki M, Figueiredo RB, Langdon TG (2016) The requirements for superplasticity with an emphasis on magnesium alloys. Adv Eng Mater 18:127–131. https://doi.org/10.1002/adem.201500068

    Article  CAS  Google Scholar 

  8. Langdon TG (1994) A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall Mater 42:2437–2443. https://doi.org/10.1016/0956-7151(94)90322-0

    Article  CAS  Google Scholar 

  9. Coble RL (1963) A model for boundary diffusion controlled creep in polycrystalline materials. J Appl Phys 34:1679–1682. https://doi.org/10.1063/1.1702656

    Article  Google Scholar 

  10. Nabarro FRN (1948) Report of a conference on strength of solids. The Physical Society, London, UK

  11. Herring C (1950) Diffusional viscosity of a polycrystalline solid. J Appl Phys 21:437–445. https://doi.org/10.1063/1.1699681

    Article  Google Scholar 

  12. Figueiredo RB, Langdon TG (2020) Analysis of the creep behavior of fine-grained AZ31 magnesium alloy. Mater Sci Eng, A 787:139489. https://doi.org/10.1016/j.msea.2020.139489

    Article  CAS  Google Scholar 

  13. Kawasaki M, Figueiredo RB, Langdon TG (2017) The development of superplasticity and deformation mechanism maps in an ultrafine-grained magnesium alloy. Mater Sci Forum 879:48–53. https://doi.org/10.4028/www.scientific.net/MSF.879.48

    Article  Google Scholar 

  14. Kawasaki M, Langdon TG (2011) Developing superplasticity and a deformation mechanism map for the Zn–Al eutectoid alloy processed by high-pressure torsion. Mater Sci Eng A 528:6140–6145. https://doi.org/10.1016/j.msea.2011.04.053

    Article  CAS  Google Scholar 

  15. Kawasaki M, Lee S, Langdon TG (2009) Constructing a deformation mechanism map for a superplastic Pb–Sn alloy processed by equal-channel angular pressing. Scripta Mater 61:963–966. https://doi.org/10.1016/j.scriptamat.2009.08.001

    Article  CAS  Google Scholar 

  16. Mohamed FA, Langdon TG (1976) Deformation mechanism maps for superplastic materials. Scr Metall 10:759–762. https://doi.org/10.1016/0036-9748(76)90358-6

    Article  CAS  Google Scholar 

  17. Wang J, Horita Z, Furukawa M et al (1993) An investigation of ductility and microstructural evolution in an Al−3% Mg alloy with submicron grain size. J Mater Res 8:2810–2818. https://doi.org/10.1557/JMR.1993.2810

    Article  CAS  Google Scholar 

  18. Watanabe H, Mukai T, Ishikawa K, Higashi K (2002) Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion. Scripta Mater 46:851–856. https://doi.org/10.1016/S1359-6462(02)00064-7

    Article  CAS  Google Scholar 

  19. Figueiredo RB, Langdon TG (2009) Strategies for achieving high strain rate superplasticity in magnesium alloys processed by equal-channel angular pressing. Scripta Mater 61:84–87. https://doi.org/10.1016/j.scriptamat.2009.03.012

    Article  CAS  Google Scholar 

  20. Figueiredo RB, Langdon TG (2021) Deformation mechanisms in ultrafine-grained metals with an emphasis on the Hall-Petch relationship and strain rate sensitivity. J Market Res 14:137–159. https://doi.org/10.1016/j.jmrt.2021.06.016

    Article  CAS  Google Scholar 

  21. Figueiredo RB, Langdon TG (2022) Effect of grain size on strength and strain rate sensitivity in metals. J Mater Sci 57:5210–5229. https://doi.org/10.1007/s10853-022-06919-0

    Article  CAS  Google Scholar 

  22. Figueiredo RB, Edalati K, Langdon TG (2022) Effect of creep parameters on the steady-state flow stress of pure metals processed by high-pressure torsion. Mater Sci Eng A 835:142666. https://doi.org/10.1016/j.msea.2022.142666

    Article  CAS  Google Scholar 

  23. Carvalho AP, Figueiredo RB (2022) The Effect of Ultragrain Refinement on the Strength and Strain Rate Sensitivity of a ZK60 Magnesium Alloy. Adv Eng Mater 24:2100846. https://doi.org/10.1002/adem.202100846

    Article  CAS  Google Scholar 

  24. Figueiredo RB, Kawasaki M, Langdon TG (2023) Seventy years of Hall-Petch, ninety years of superplasticity and a generalized approach to the effect of grain size on flow stress. Prog Mater Sci 137:101131. https://doi.org/10.1016/j.pmatsci.2023.101131

    Article  CAS  Google Scholar 

  25. Carvalho AP, Figueiredo RB (2023) The contribution of grain boundary sliding to the deformation in an ultrafine-grained Mg–Al–Zn alloy. J Mater Sci. https://doi.org/10.1007/s10853-023-08489-1

    Article  Google Scholar 

  26. Figueiredo RB, Wolf W, Langdon TG (2022) Effect of grain size on strength and strain rate sensitivity in the CrMnFeCoNi high-entropy alloy. J Market Res 20:2358. https://doi.org/10.1016/j.jmrt.2022.07.181

    Article  CAS  Google Scholar 

  27. Chong Y, Deng G, Gao S, Yi J, Shibata A, Tsuji N (2019) Yielding nature and Hall-Petch relationships in Ti-6Al-4V alloy with fully equiaxed and bimodal microstructures. Scripta Mater 172:77–82. https://doi.org/10.1016/j.scriptamat.2019.07.015

    Article  CAS  Google Scholar 

  28. Pereira PHR, Wang YC, Huang Y, Langdon TG (2017) Influence of grain size on the flow properties of an Al-Mg-Sc alloy over seven orders of magnitude of strain rate. Mater Sci Eng A 685:367–376. https://doi.org/10.1016/j.msea.2017.01.020

    Article  CAS  Google Scholar 

  29. Liang JW, Shen YF, Misra RDK, Liaw PK (2021) High strength-superplasticity combination of ultrafine-grained ferritic steel: The significant role of nanoscale carbides. J Mater Sci Technol 83:131–144. https://doi.org/10.1016/j.jmst.2020.11.078

    Article  CAS  Google Scholar 

  30. Han BQ, Mohamed FA, Lavernia EJ (2003) Mechanical properties of iron processed by severe plastic deformation. Metall Mater Trans A 34:71–83. https://doi.org/10.1007/s11661-003-0209-7

    Article  Google Scholar 

  31. Curtin WA, Olmsted DL, Hector LG (2006) A predictive mechanism for dynamic strain ageing in aluminium–magnesium alloys. Nat Mater 5:875–880. https://doi.org/10.1038/nmat1765

    Article  CAS  PubMed  Google Scholar 

  32. Queiroz RRU, Cunha FGG, Gonzalez BM (2012) Study of dynamic strain aging in dual phase steel. Mater Sci Eng A 543:84–87. https://doi.org/10.1016/j.msea.2012.02.050

    Article  CAS  Google Scholar 

  33. Brindley BJ, Barnby JT (1966) Dynamic strain ageing in mild steel. Acta Metall 14:1765–1780. https://doi.org/10.1016/0001-6160(66)90028-9

    Article  CAS  Google Scholar 

  34. Barnett MR, Keshavarz Z, Beer AG, Atwell D (2004) Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater 52:5093–5103. https://doi.org/10.1016/j.actamat.2004.07.015

    Article  CAS  Google Scholar 

  35. Varvenne C, Leyson GPM, Ghazisaeidi M, Curtin WA (2017) Solute strengthening in random alloys. Acta Mater 124:660–683. https://doi.org/10.1016/j.actamat.2016.09.046

    Article  CAS  Google Scholar 

  36. Carvalho AP, Figueiredo RB (2023) An overview of the effect of grain size on mechanical properties of magnesium and its alloys. Mater Trans. https://doi.org/10.2320/matertrans.MT-MF2022005

    Article  Google Scholar 

  37. Frost HJ, Ashby MF (1982) Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press, Oxford, U.K.

    Google Scholar 

  38. Ma ZY, Liu FC, Mishra RS (2010) Superplastic deformation mechanism of an ultrafine-grained aluminum alloy produced by friction stir processing. Acta Mater 58:4693–4704. https://doi.org/10.1016/j.actamat.2010.05.003

    Article  CAS  Google Scholar 

  39. Turba K, Málek P, Cieslar M (2007) Superplasticity in an Al–Mg–Zr–Sc alloy produced by equal-channel angular pressing. Mater Sci Eng, A 462:91–94. https://doi.org/10.1016/j.msea.2006.01.178

    Article  CAS  Google Scholar 

  40. Musin F, Kaibyshev R, Motohashi Y, Itoh G (2004) High strain rate superplasticity in a commercial Al–Mg–Sc alloy. Scripta Mater 50:511–516. https://doi.org/10.1016/j.scriptamat.2003.10.021

    Article  CAS  Google Scholar 

  41. Mishra RS, Valiev RZ, McFadden SX, Islamgaliev RK, Mukherjee AK (2001) High-strain-rate superplasticity from nanocrystalline Al alloy 1420 at low temperatures. Philos Mag A 81:37–48. https://doi.org/10.1080/01418610108216616

    Article  CAS  Google Scholar 

  42. Komura S, Horita Z, Furukawa M, Nemoto M, Langdon TG (2001) An evaluation of the flow behavior during high strain rate superplasticity in an Al-Mg-Sc alloy. Metall Mater Trans A 32:707–716. https://doi.org/10.1007/s11661-001-0087-9

    Article  Google Scholar 

  43. Chinh NQ, Murashkin MY, Bobruk EV et al (2021) Ultralow-temperature superplasticity and its novel mechanism in ultrafine-grained Al alloys. Mater Res Lett 9:475–482. https://doi.org/10.1080/21663831.2021.1976293

    Article  CAS  Google Scholar 

  44. Neishi K, Horita Z, Langdon TG (2003) Achieving superplasticity in ultrafine-grained copper: influence of Zn and Zr additions. Mater Sci Eng A 352:129–135. https://doi.org/10.1016/S0921-5093(02)00868-7

    Article  CAS  Google Scholar 

  45. Neishi K, Uchida T, Yamauchi A, Nakamura K, Horita Z, Langdon TG (2001) Low-temperature superplasticity in a Cu–Zn–Sn alloy processed by severe plastic deformation. Mater Sci Eng A 307:23–28. https://doi.org/10.1016/S0921-5093(00)01970-5

    Article  Google Scholar 

  46. Shei S-A, Langdon TG (1978) The mechanical properties of a superplastic quasi-single phase copper alloy. Acta Metall 26:639–646. https://doi.org/10.1016/0001-6160(78)90116-5

    Article  CAS  Google Scholar 

  47. Han J, Kang S-H, Lee S-J et al (2017) Superplasticity in a lean Fe-Mn-Al steel. Nat Commun 8:751. https://doi.org/10.1038/s41467-017-00814-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pan H, Li X, Zhang H, Liu L, Wu Z (2023) Achieving low-temperature superplasticity in a cold-rolled medium Mn steel with an equilibrium ultrafine equiaxed dual-phase microstructure. Mater Sci Eng A 873:145004. https://doi.org/10.1016/j.msea.2023.145004

    Article  CAS  Google Scholar 

  49. Goldberg A, Ruano OA, Sherby OD (1992) Development of ultrafine microstructures and superplasticity in Hadfield manganese steels. Mater Sci Eng, A 150:187–194. https://doi.org/10.1016/0921-5093(92)90111-D

    Article  Google Scholar 

  50. Jeong H-B, Lee J-Y, Jin J-C, Cho H-J, Lee Y-K (2023) High-strain rate and low-temperature superplasticity of Fe-Mn-Si-Ni steel. J Alloy Compd 958:170536. https://doi.org/10.1016/j.jallcom.2023.170536

    Article  CAS  Google Scholar 

  51. Zhang H, Cai M, Zhu W et al (2022) Low-Temperature Superplastic Deformation of Cold-Rolled Fe–5.6Mn–1.1Al–0.2C Steel. Metall Mater Trans A 53:3869–3880. https://doi.org/10.1007/s11661-022-06790-3

    Article  CAS  Google Scholar 

  52. Figueiredo RB, Langdon TG (2008) Developing superplasticity in a magnesium AZ31 alloy by ECAP. J Mater Sci 43:7366–7371. https://doi.org/10.1007/s10853-008-2846-0

    Article  CAS  Google Scholar 

  53. Figueiredo RB, Pereira PHR, Langdon TG (2018) Low temperature superplasticity in ultrafine-grained AZ31 alloy. Defect Diffusion Forum 385:59–64. https://doi.org/10.4028/www.scientific.net/DDF.385.59

    Article  Google Scholar 

  54. Figueiredo RB, Langdon TG (2014) Evaluating the superplastic flow of a magnesium AZ31 alloy processed by equal-channel angular pressing. Metall Mater Trans A 45:3197–3204. https://doi.org/10.1007/s11661-013-1920-7

    Article  CAS  Google Scholar 

  55. Figueiredo RB, Langdon TG (2010) Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP. J Mater Sci 45:4827–4836. https://doi.org/10.1007/s10853-010-4589-y

    Article  CAS  Google Scholar 

  56. Figueiredo RB, Langdon TG (2012) Influence of rolling direction on flow and cavitation in a superplastic magnesium alloy processed by equal-channel angular pressing. Mater Sci Eng A 556:211–220. https://doi.org/10.1016/j.msea.2012.06.079

    Article  CAS  Google Scholar 

  57. Figueiredo RB, Langdon TG (2020) Using high-pressure torsion to achieve superplasticity in an AZ91 magnesium alloy. Metals 10:681

    Article  Google Scholar 

  58. Atwell DL, Barnett MR, Hutchinson WB (2012) The effect of initial grain size and temperature on the tensile properties of magnesium alloy AZ31 sheet. Mater Sci Eng A 549:1–6. https://doi.org/10.1016/j.msea.2012.03.107

    Article  CAS  Google Scholar 

  59. Xu J, Wang XW, Shirooyeh M et al (2015) Microhardness, microstructure and tensile behavior of an AZ31 magnesium alloy processed by high-pressure torsion. J Mater Sci 50:7424–7436. https://doi.org/10.1007/s10853-015-9300-x

    Article  CAS  Google Scholar 

  60. Spigarelli S, Ruano OA, El Mehtedi M, del Valle JA (2013) High temperature deformation and microstructural instability in AZ31 magnesium alloy. Mater Sci Eng A 570:135–148. https://doi.org/10.1016/j.msea.2013.01.060

    Article  CAS  Google Scholar 

  61. Watanabe H, Fukusumi M (2008) Mechanical properties and texture of a superplastically deformed AZ31 magnesium alloy. Mater Sci Eng A 477:153–161. https://doi.org/10.1016/j.msea.2007.05.012

    Article  CAS  Google Scholar 

  62. Olguín-González ML, Hernández-Silva D, García-Bernal MA, Sauce-Rangel VM (2014) Hot deformation behavior of hot-rolled AZ31 and AZ61 magnesium alloys. Mater Sci Eng A 597:82–88. https://doi.org/10.1016/j.msea.2013.12.027

    Article  CAS  Google Scholar 

  63. Watanabe H, Tsutsui H, Mukai T, Kohzu M, Tanabe S, Higashi K (2001) Deformation mechanism in a coarse-grained Mg–Al–Zn alloy at elevated temperatures. Int J Plast 17:387–397. https://doi.org/10.1016/S0749-6419(00)00042-5

    Article  CAS  Google Scholar 

  64. del Valle JA, Carreño F, Ruano OA (2007) On the threshold stress for superplasticity in Mg–Al–Zn alloys. Scripta Mater 57:829–832. https://doi.org/10.1016/j.scriptamat.2007.07.002

    Article  CAS  Google Scholar 

  65. Lin HK, Huang JC, Langdon TG (2005) Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP. Mater Sci Eng A 402:250–257. https://doi.org/10.1016/j.msea.2005.04.018

    Article  CAS  Google Scholar 

  66. Lin HK, Huang JC (2002) High Strain Rate and/or Low Temperature Superplasticity in AZ31 Mg Alloys Processed by Simple High-Ratio Extrusion Methods. Mater Trans 43:2424–2432. https://doi.org/10.2320/matertrans.43.2424

    Article  CAS  Google Scholar 

  67. Somekawa H, Watanabe H, Mukai T, Higashi K (2003) Low temperature diffusion bonding in a superplastic AZ31 magnesium alloy. Scripta Mater 48:1249–1254. https://doi.org/10.1016/S1359-6462(03)00054-X

    Article  CAS  Google Scholar 

  68. Harai Y, Kai M, Kaneko K, Horita Z, Langdon TG (2008) Microstructural and mechanical characteristics of AZ61 magnesium alloy processed by high-pressure torsion. Mater Trans 49:76–83. https://doi.org/10.2320/matertrans.ME200718

    Article  CAS  Google Scholar 

  69. Mabuchi M, Ameyama K, Iwasaki H, Higashi K (1999) Low temperature superplasticity of AZ91 magnesium alloy with non-equilibrium grain boundaries. Acta Mater 47:2047–2057. https://doi.org/10.1016/S1359-6454(99)00094-4

    Article  CAS  Google Scholar 

  70. Mabuchi M, Asahina T, Iwasaki H, Higashi K (1997) Experimental investigation of superplastic behaviour in magnesium alloys. Mater Sci Technol 13:825–831. https://doi.org/10.1179/mst.1997.13.10.825

    Article  CAS  Google Scholar 

  71. Zhang T, Liu Y, Sanders DG, Liu B, Zhang W, Zhou C (2014) Development of fine-grain size titanium 6Al–4V alloy sheet material for low temperature superplastic forming. Mater Sci Eng A 608:265–272. https://doi.org/10.1016/j.msea.2014.04.098

    Article  CAS  Google Scholar 

  72. Mishra RS, Stolyarov VV, Echer C, Valiev RZ, Mukherjee AK (2001) Mechanical behavior and superplasticity of a severe plastic deformation processed nanocrystalline Ti–6Al–4V alloy. Mater Sci Eng A 298:44–50. https://doi.org/10.1016/S0921-5093(00)01338-1

    Article  Google Scholar 

  73. Shahmir H, Naghdi F, Pereira PHR, Huang Y, Langdon TG (2018) Factors influencing superplasticity in the Ti-6Al-4V alloy processed by high-pressure torsion. Mater Sci Eng A 718:198–206. https://doi.org/10.1016/j.msea.2018.01.091

    Article  CAS  Google Scholar 

  74. Zhang W, Ding H, Cai M, Yang W, Li J (2018) Ultra-grain refinement and enhanced low-temperature superplasticity in a friction stir-processed Ti-6Al-4V alloy. Mater Sci Eng A 727:90–96. https://doi.org/10.1016/j.msea.2018.03.009

    Article  CAS  Google Scholar 

  75. Kral P, Dvorak J, Blum W et al (2016) Creep study of mechanisms involved in low-temperature superplasticity of UFG Ti-6Al-4V processed by SPD. Mater Charact 116:84–90. https://doi.org/10.1016/j.matchar.2016.04.007

    Article  CAS  Google Scholar 

  76. Patankar SN, Escobedo JP, Field DP et al (2002) Superior superplastic behavior in fine-grained Ti–6Al–4V sheet. J Alloy Compd 345:221–227. https://doi.org/10.1016/S0925-8388(02)00406-1

    Article  CAS  Google Scholar 

  77. Zhang W, Ding H, Pereira PHR, Huang Y, Langdon TG (2018) Grain refinement and superplastic flow in a fully lamellar Ti-6Al-4V alloy processed by high-pressure torsion. Mater Sci Eng A 732:398–405. https://doi.org/10.1016/j.msea.2018.07.010

    Article  CAS  Google Scholar 

  78. Demirtas M, Kawasaki M, Yanar H, Purcek G (2018) High temperature superplasticity and deformation behavior of naturally aged Zn-Al alloys with different phase compositions. Mater Sci Eng A 730:73–83. https://doi.org/10.1016/j.msea.2018.05.104

    Article  CAS  Google Scholar 

  79. Balog M, Marques M, de Castro J, Čapek, et al (2023) Suppression of mechanical instability in bioabsorbable ultrafine-grained Zn through in-situ stabilization by ZnO nanodispersoids. J Market Res 25:4510–4527. https://doi.org/10.1016/j.jmrt.2023.06.252

    Article  CAS  Google Scholar 

  80. Tandon S, Murty GS (1993) Threshold stress for superplastic flow in the Zn-Al Eutectoid alloy. Mater Trans JIM 34:319–324. https://doi.org/10.2320/matertrans1989.34.319

    Article  CAS  Google Scholar 

  81. Xia SH, Wang J, Wang JT, Liu JQ (2008) Improvement of room-temperature superplasticity in Zn–22wt.%Al alloy. Mater Sci Eng, A 493:111–115. https://doi.org/10.1016/j.msea.2007.07.100

    Article  CAS  Google Scholar 

  82. Demirtas M, Purcek G, Yanar H, Zhang ZJ, Zhang ZF (2015) Improvement of high strain rate and room temperature superplasticity in Zn–22Al alloy by two-step equal-channel angular pressing. Mater Sci Eng A 620:233–240. https://doi.org/10.1016/j.msea.2014.09.114

    Article  CAS  Google Scholar 

  83. Tanaka T, Kohzu M, Takigawa Y, Higashi K (2005) Low cycle fatigue behavior of Zn–22mass%Al alloy exhibiting high-strain-rate superplasticity at room temperature. Scripta Mater 52:231–236. https://doi.org/10.1016/j.scriptamat.2004.09.023

    Article  CAS  Google Scholar 

  84. Tanaka T, Higashi K (2004) Superplasticity at room temperature in Zn-22Al alloy processed by equal-channel-angular extrusion. Mater Trans 45:1261–1265. https://doi.org/10.2320/matertrans.45.1261

    Article  CAS  Google Scholar 

  85. Carreño F (2023) Predicting ECAP misorientation evolution and its influence on superplasticity for an Al-Zn-Mg-Cu alloy. Mater Res Proc 32:189–196. https://doi.org/10.21741/9781644902615-21

    Article  Google Scholar 

  86. Orozco-Caballero A, Ruano OA, Rauch EF, Carreño F (2018) Severe friction stir processing of an Al-Zn-Mg-Cu alloy: Misorientation and its influence on superplasticity. Mater Des 137:128–139. https://doi.org/10.1016/j.matdes.2017.10.008

    Article  CAS  Google Scholar 

  87. Wang K, Liu FC, Xue P, Wang D, Xiao BL, Ma ZY (2016) Superplastic constitutive equation including percentage of high-angle grain boundaries as a microstructural parameter. Metall Mater Trans A 47:546–559. https://doi.org/10.1007/s11661-015-3230-8

    Article  CAS  Google Scholar 

  88. Liu FC, Ma ZY, Zhang FC (2012) High strain rate superplasticity in a micro-grained Al–Mg–Sc alloy with predominant high angle grain boundaries. J Mater Sci Technol 28:1025–1030. https://doi.org/10.1016/S1005-0302(12)60168-6

    Article  CAS  Google Scholar 

  89. Liu FC, Xue P, Ma ZY (2012) Microstructural evolution in recrystallized and unrecrystallized Al–Mg–Sc alloys during superplastic deformation. Mater Sci Eng A 547:55–63. https://doi.org/10.1016/j.msea.2012.03.076

    Article  CAS  Google Scholar 

  90. Orozco-Caballero A, Ruano OA, Carreño F (2017) Influence of grain coarsening on the creep parameters during the superplastic deformation of a severely friction stir processed Al-Zn-Mg-Cu alloy. Metall Mater Trans A 48:3980–3984. https://doi.org/10.1007/s11661-017-4198-3

    Article  CAS  Google Scholar 

  91. Panicker MRR, Chokshi AH (2011) Influence of grain size on high temperature fracture in a Mg AZ31 alloy. Mater Sci Eng A 528:3031–3036. https://doi.org/10.1016/j.msea.2010.12.076

    Article  CAS  Google Scholar 

  92. Kotov AD, Postnikova MN, Mosleh AO, Mikhaylovskaya AV (2023) Effect of Mo content on the microstructure, superplastic behavior, and mechanical properties of Ni and Fe-modified titanium alloys. Mater Sci Eng, A 877:145166. https://doi.org/10.1016/j.msea.2023.145166

    Article  CAS  Google Scholar 

  93. Mikhaylovskaya AV, Yakovtseva OA, Mochugovskiy AG, Cifre J, Golovin IS (2022) Influence of minor Zn additions on grain boundary anelasticity, grain boundary sliding, and superplasticity of Al-Mg-based alloys. J Alloy Compd 926:166785. https://doi.org/10.1016/j.jallcom.2022.166785

    Article  CAS  Google Scholar 

  94. Kotov AD, Postnikova MN, Mosleh AO, Mikhaylovskaya AV (2022) Influence of Fe on the microstructure, superplasticity and room-temperature mechanical properties of Ti–4Al–3Mo–1V-0.1B alloy. Mater Sci Eng A 845:143245. https://doi.org/10.1016/j.msea.2022.143245

    Article  CAS  Google Scholar 

  95. Alabort E, Kontis P, Barba D, Dragnevski K, Reed RC (2016) On the mechanisms of superplasticity in Ti–6Al–4V. Acta Mater 105:449–463. https://doi.org/10.1016/j.actamat.2015.12.003

    Article  CAS  Google Scholar 

  96. Yakovtseva OA, Kishchik AA, Cheverikin VV, Kotov AD, Mikhaylovskaya AV (2022) The mechanisms of the high-strain-rate superplastic deformation of Al-Mg-based alloy. Mater Lett 325:132883. https://doi.org/10.1016/j.matlet.2022.132883

    Article  CAS  Google Scholar 

  97. Mikhaylovskaya AV, Yakovtseva OA, Irzhak AV (2022) The role of grain boundary sliding and intragranular deformation mechanisms for a steady stage of superplastic flow for Al–Mg-based alloys. Mater Sci Eng, A 833:142524. https://doi.org/10.1016/j.msea.2021.142524

    Article  CAS  Google Scholar 

  98. Edalati K, Masuda T, Arita M et al (2017) Room-temperature superplasticity in an ultrafine-grained magnesium alloy. Sci Rep 7:2662. https://doi.org/10.1038/s41598-017-02846-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chinh NQ, Csanádi T, Győri T et al (2012) Strain rate sensitivity studies in an ultrafine-grained Al–30wt.% Zn alloy using micro- and nanoindentation. Mater Sci Eng A 543:117–120. https://doi.org/10.1016/j.msea.2012.02.056

    Article  CAS  Google Scholar 

  100. Song Z, Niu R, Cui X et al (2023) Mechanism of room-temperature superplasticity in ultrafine-grained Al–Zn alloys. Acta Mater 246:118671. https://doi.org/10.1016/j.actamat.2023.118671

    Article  CAS  Google Scholar 

  101. Edalati K, Horita Z, Valiev RZ (2018) Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy. Sci Rep 8:6740. https://doi.org/10.1038/s41598-018-25140-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author acknowledges financial support from CNPq (grant 302832/2022-0) and FAPEMIG (grants TEC-PPM-00324-17, APQ-02023-23 and BPD-00228-22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto B. Figueiredo.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Ethical approval

Not Applicable.

Supplementary information

Not Applicable.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueiredo, R.B. Strain-rate sensitivity maps and the estimation of ductility for low temperature superplasticity. J Mater Sci 59, 5854–5871 (2024). https://doi.org/10.1007/s10853-024-09453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09453-3

Navigation