Skip to main content
Log in

The contribution of grain boundary sliding to the deformation in an ultrafine-grained Mg–Al–Zn alloy

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Severe plastic deformation through high-pressure torsion is used to refine the grain structure of the Mg–Al–Zn alloy down to ~ 140 nm and low temperature annealing is used to produce samples with different grain sizes, within the ultrafine range. The mechanical behavior is investigated using different testing techniques including microhardness, indentation creep, plane-strain compression, creep, and miniaturized tensile testing. The results allow a comprehensive analysis of the deformation mechanism. It is shown that the relationship between the flow stress and the inverse of the square root of the grain size is not linear in the ultrafine grained range and depends on temperature and strain rate. Grain refinement hardening and grain refinement softening can be observed at different temperatures and strain rates. There is an increase in strain-rate sensitivity and a decrease in apparent activation volume with decreasing the grain size. These experimental observations agree with the deformation mechanism of grain boundary sliding provided the thermal contribution for the threshold stress is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Figueiredo RB, Sabbaghianrad S, Giwa A, Greer JR, Langdon TG (2017) Evidence for exceptional low temperature ductility in polycrystalline magnesium processed by severe plastic deformation. Acta Mater 122:322–331. https://doi.org/10.1016/j.actamat.2016.09.054

    Article  CAS  Google Scholar 

  2. Somekawa H, Mukai T (2015) Hall-Petch breakdown in fine-grained pure magnesium at low strain rates. Metall and Mater Trans A 46:894–902. https://doi.org/10.1007/s11661-014-2641-2

    Article  CAS  Google Scholar 

  3. Zeng Z, Nie J-F, Xu S-W, Davies CHJ, Birbilis N (2017) Super-formable pure magnesium at room temperature. Nat Commun 8:972. https://doi.org/10.1038/s41467-017-01330-9

    Article  CAS  Google Scholar 

  4. Somekawa H, Basha DA, Singh A (2019) Deformation behavior at room temperature ranges of fine-grained Mg–Mn system alloys. Mater Sci Eng A 766:138384. https://doi.org/10.1016/j.msea.2019.138384

    Article  CAS  Google Scholar 

  5. Somekawa H, Basha DA, Singh A (2018) Room temperature grain boundary sliding behavior of fine-grained Mg–Mn alloys. Mater Sci Eng A 730:355–362. https://doi.org/10.1016/j.msea.2018.06.015

    Article  CAS  Google Scholar 

  6. Somekawa H, Kinoshita A, Kato A (2018) Effect of alloying elements on room temperature stretch formability in Mg alloys. Mater Sci Eng A 732:21–28. https://doi.org/10.1016/j.msea.2018.06.098

    Article  CAS  Google Scholar 

  7. Somekawa H, Singh A (2018) Superior room temperature ductility of magnesium dilute binary alloy via grain boundary sliding. Scripta Mater 150:26–30. https://doi.org/10.1016/j.scriptamat.2018.02.034

    Article  CAS  Google Scholar 

  8. Edalati K, Masuda T, Arita M et al (2017) Room-temperature superplasticity in an ultrafine-grained magnesium alloy. Sci Rep 7:2662. https://doi.org/10.1038/s41598-017-02846-2

    Article  CAS  Google Scholar 

  9. Matsunoshita H, Edalati K, Furui M, Horita Z (2015) Ultrafine-grained magnesium-lithium alloy processed by high-pressure torsion: low-temperature superplasticity and potential for hydroforming. Mater Sci Eng A 640:443–448. https://doi.org/10.1016/j.msea.2015.05.103

    Article  CAS  Google Scholar 

  10. Zheng RX, Bhattacharjee T, Shibata A et al (2017) Simultaneously enhanced strength and ductility of Mg-Zn-Zr-Ca alloy with fully recrystallized ultrafine grained structures. Scripta Mater 131:1–5. https://doi.org/10.1016/j.scriptamat.2016.12.024

    Article  CAS  Google Scholar 

  11. Castro MM, Pereira PHR, Isaac A, Langdon TG, Figueiredo RB (2020) Inverse Hall-Petch behaviour in an AZ91 alloy and in an AZ91–Al2O3 composite consolidated by high-pressure torsion. Adv Eng Mater 22:1900894. https://doi.org/10.1002/adem.201900894

    Article  CAS  Google Scholar 

  12. Carvalho AP, Figueiredo RB (2022) The effect of ultragrain refinement on the strength and strain rate sensitivity of a ZK60 magnesium alloy. Adv Eng Mater 24:2100846. https://doi.org/10.1002/adem.202100846

    Article  CAS  Google Scholar 

  13. Zheng R, Du J-P, Gao S, Somekawa H, Ogata S, Tsuji N (2020) Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer. Acta Mater 198:35–46. https://doi.org/10.1016/j.actamat.2020.07.055

    Article  CAS  Google Scholar 

  14. Figueiredo RB, Langdon TG (2021) Deformation mechanisms in ultrafine-grained metals with an emphasis on the Hall-Petch relationship and strain rate sensitivity. J Market Res 14:137–159. https://doi.org/10.1016/j.jmrt.2021.06.016

    Article  CAS  Google Scholar 

  15. Figueiredo RB, Edalati K, Langdon TG (2022) Effect of creep parameters on the steady-state flow stress of pure metals processed by high-pressure torsion. Mater Sci Eng A 835:142666. https://doi.org/10.1016/j.msea.2022.142666

    Article  CAS  Google Scholar 

  16. Figueiredo RB, Langdon TG (2022) Effect of grain size on strength and strain rate sensitivity in metals. J Mater Sci 57:5210–5229. https://doi.org/10.1007/s10853-022-06919-0

    Article  CAS  Google Scholar 

  17. Figueiredo RB, Wolf W, Langdon TG (2022) Effect of grain size on strength and strain rate sensitivity in the CrMnFeCoNi high-entropy alloy. J Market Res 20:2358. https://doi.org/10.1016/j.jmrt.2022.07.181

    Article  CAS  Google Scholar 

  18. Somekawa H, Mukai T (2012) Effect of grain boundary structures on grain boundary sliding in magnesium. Mater Lett 76:32–35

    Article  CAS  Google Scholar 

  19. Figueiredo RB, Poggiali FSJ, Silva CLP, Cetlin PR, Langdon TG (2016) The influence of grain size and strain rate on the mechanical behavior of pure magnesium. J Mater Sci 51:3013–3024. https://doi.org/10.1007/s10853-015-9612-x

    Article  CAS  Google Scholar 

  20. Tabor D (1948) A simple theory of static and dynamic hardness. Proc R Soc Lond Ser Math Phys Sci 192:247–274. https://doi.org/10.1098/rspa.1948.0008

    Article  Google Scholar 

  21. Zhang P, Li SX, Zhang ZF (2011) General relationship between strength and hardness. Mater Sci Eng A 529:62–73. https://doi.org/10.1016/j.msea.2011.08.061

    Article  CAS  Google Scholar 

  22. Chinh NQ, Szommer P (2014) Mathematical description of indentation creep and its application for the determination of strain rate sensitivity. Mater Sci Eng A 611:333–336. https://doi.org/10.1016/j.msea.2014.06.011

    Article  CAS  Google Scholar 

  23. Carvalho AP, Reis LM, Pinheiro RPRP, Pereira PHR, Langdon TG, Figueiredo RB (2022) Using plane strain compression test to evaluate the mechanical behavior of magnesium processed by HPT. Metals 12:125

    Article  CAS  Google Scholar 

  24. Choi IC, Lee DH, Ahn B et al (2015) Enhancement of strain-rate sensitivity and shear yield strength of a magnesium alloy processed by high-pressure torsion. Scripta Mater 94:44–47. https://doi.org/10.1016/j.scriptamat.2014.09.014

    Article  CAS  Google Scholar 

  25. Sherby OD, Lytton JL, Dorn JE (1957) Activation energies for creep of high-purity aluminum. Acta Metall 5:219–227. https://doi.org/10.1016/0001-6160(57)90169-4

    Article  CAS  Google Scholar 

  26. Somekawa H, Singh A, Sahara R, Inoue T (2018) Excellent room temperature deformability in high strain rate regimes of magnesium alloy. Sci Rep. https://doi.org/10.1038/s41598-017-19124-w

    Article  Google Scholar 

  27. Somekawa H, Singh A, Mukai T, Inoue T (2016) Effect of alloying elements on room temperature tensile ductility in magnesium alloys. Phil Mag 96:2671–2685. https://doi.org/10.1080/14786435.2016.1212174

    Article  CAS  Google Scholar 

  28. Thompson AW (1972) Calculation of true volume grain diameter. Metallography 5:366–369. https://doi.org/10.1016/0026-0800(72)90018-3

    Article  Google Scholar 

  29. Varvenne C, Leyson GPM, Ghazisaeidi M, Curtin WA (2017) Solute strengthening in random alloys. Acta Mater 124:660–683. https://doi.org/10.1016/j.actamat.2016.09.046

    Article  CAS  Google Scholar 

  30. Leyson GPM, Hector LG, Curtin WA (2012) Solute strengthening from first principles and application to aluminum alloys. Acta Mater 60:3873–3884. https://doi.org/10.1016/j.actamat.2012.03.037

    Article  CAS  Google Scholar 

  31. Leyson GPM, Curtin WA, Hector LG, Woodward CF (2010) Quantitative prediction of solute strengthening in aluminium alloys. Nat Mater 9:750–755. https://doi.org/10.1038/nmat2813

    Article  CAS  Google Scholar 

  32. Atwell DL, Barnett MR, Hutchinson WB (2012) The effect of initial grain size and temperature on the tensile properties of magnesium alloy AZ31 sheet. Mater Sci Eng A 549:1–6. https://doi.org/10.1016/j.msea.2012.03.107

    Article  CAS  Google Scholar 

  33. Barnett MR, Keshavarz Z, Beer AG, Atwell D (2004) Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater 52:5093–5103. https://doi.org/10.1016/j.actamat.2004.07.015

    Article  CAS  Google Scholar 

  34. Takahashi H, Oishi Y, Wakamatsu K, Kawabe N (2003) Tensile properties and bending formability of drawn magnesium alloy pipes. Mater Sci Forum 419–422:345–348. https://doi.org/10.4028/www.scientific.net/MSF.419-422.345

    Article  Google Scholar 

  35. del Valle JA, Carreño F, Ruano OA (2007) On the threshold stress for superplasticity in Mg–Al–Zn alloys. Scripta Mater 57:829–832. https://doi.org/10.1016/j.scriptamat.2007.07.002

    Article  CAS  Google Scholar 

  36. Figueiredo RB, Pereira PHR, Langdon TG (2018) Low temperature superplasticity in ultrafine-grained AZ31 alloy. Defect Diffus Forum 385:59–64. https://doi.org/10.4028/www.scientific.net/DDF.385.59

    Article  Google Scholar 

  37. Coble RL (1963) A model for boundary diffusion controlled creep in polycrystalline materials. J Appl Phys 34:1679–1682. https://doi.org/10.1063/1.1702656

    Article  Google Scholar 

  38. Chun YB, Davies CHJ (2011) Twinning-induced negative strain rate sensitivity in wrought Mg alloy AZ31. Mater Sci Eng A 528:5713–5722. https://doi.org/10.1016/j.msea.2011.04.059

    Article  CAS  Google Scholar 

  39. Xia K, Wang JT, Wu X, Chen G, Gurvan M (2005) Equal channel angular pressing of magnesium alloy AZ31. Mater Sci Eng A 410–411:324–327

    Article  Google Scholar 

  40. del Valle JA, Carreño F, Ruano OA (2006) Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling. Acta Mater 54:4247–4259. https://doi.org/10.1016/j.actamat.2006.05.018

    Article  CAS  Google Scholar 

  41. Zhan MY, Li YY, Chen WP, Chen WD (2007) Microstructure and mechanical properties of Mg–Al–Zn alloy sheets severely deformed by accumulative roll-bonding. J Mater Sci 42:9256–9261. https://doi.org/10.1007/s10853-007-1885-2

    Article  CAS  Google Scholar 

  42. Yuan W, Mishra RS, Carlson B, Mishra RK, Verma R, Kubic R (2011) Effect of texture on the mechanical behavior of ultrafine grained magnesium alloy. Scripta Mater 64:580–583. https://doi.org/10.1016/j.scriptamat.2010.11.052

    Article  CAS  Google Scholar 

  43. Razavi SM, Foley DC, Karaman I et al (2012) Effect of grain size on prismatic slip in Mg–3Al–1Zn alloy. Scripta Mater 67:439–442. https://doi.org/10.1016/j.scriptamat.2012.05.017

    Article  CAS  Google Scholar 

  44. Straska J, Janecek M, Gubicza J, Krajnak T, Yoon EY, Kim HS (2015) Evolution of microstructure and hardness in AZ31 alloy processed by high pressure torsion. Mater Sci Eng A 625:98–106. https://doi.org/10.1016/j.msea.2014.12.005

    Article  CAS  Google Scholar 

  45. Xu J, Wang XW, Shirooyeh M et al (2015) Microhardness, microstructure and tensile behavior of an AZ31 magnesium alloy processed by high-pressure torsion. J Mater Sci 50:7424–7436. https://doi.org/10.1007/s10853-015-9300-x

    Article  CAS  Google Scholar 

  46. Guan D, Rainforth WM, Sharp J, Gao J, Todd I (2016) On the use of cryomilling and spark plasma sintering to achieve high strength in a magnesium alloy. J Alloy Compd 688:1141–1150. https://doi.org/10.1016/j.jallcom.2016.07.162

    Article  CAS  Google Scholar 

  47. Zhou H, Hu L, Sun Y, Zhang H, Duan C, Yu H (2016) Synthesis of nanocrystalline AZ31 magnesium alloy with titanium addition by mechanical milling. Mater Charact 113:108–116. https://doi.org/10.1016/j.matchar.2016.01.014

    Article  CAS  Google Scholar 

  48. Silva CLP, Soares RB, Pereira PHR, Figueiredo RB, Lins VFC, Langdon TG (2019) The effect of high-pressure torsion on microstructure, hardness and corrosion behavior for pure magnesium and different magnesium alloys. Adv Eng Mater 21:1801081. https://doi.org/10.1002/adem.201801081

    Article  CAS  Google Scholar 

  49. Lin HK, Huang JC (2002) High strain rate and/or low temperature superplasticity in AZ31 Mg alloys processed by simple high-ratio extrusion methods. Mater Trans 43:2424–2432. https://doi.org/10.2320/matertrans.43.2424

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from CAPES, CNPq and FAPEMIG.

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico, 302832/2022-0, Roberto B Figueiredo, Fundação de Amparo à Pesquisa do Estado de Minas Gerais,TEC-PPM-00324-17, Roberto B Figueiredo

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto B. Figueiredo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, A.P., Figueiredo, R.B. The contribution of grain boundary sliding to the deformation in an ultrafine-grained Mg–Al–Zn alloy. J Mater Sci 58, 8130–8142 (2023). https://doi.org/10.1007/s10853-023-08489-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08489-1

Navigation