Skip to main content
Log in

Plasticized green electrolyte and table salt for energy storage applications

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The main purpose of this research is to construct an energy storage device using green solid polymer electrolyte and nontoxic salt, due to the rising number of microplastics in the ocean that can affect our health. Activated carbon materials were used to fabricate symmetrical electrodes. A SPE system was fabricated by solution casting with chitosan (CS) and dextran as the polymer host to accommodate sodium chloride (NaCl salt) for the ionic transport process. The maximum conductivity displayed by the CSDNCG4 system is 1.09 × 10−4 S/cm. The system exhibits non-Debye behavior, as evidenced by the depressed semicircle with its diameter below the real-axis and an asymmetrical tanδ. The plasticizer boosts the ion transport parameters. Various dielectric characteristics, including dielectric loss, electric modulus and dielectric constant, are measured versus frequency. Dielectric analysis and conductivity show the same trend. Through TNM measurement, the ion fraction and its contribution were identified. The potential stability of the CS/dextran/NaCl film was found to reach 1.8 V. The capacitive behavior of the constructed EDLC was analyzed using the CV test. The Cspe was found to be 7.3 F/g at 10 mV/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Dong Z, Zhang Z, Li Z, Li X, Qin J, Liang C, Han M, Yin Y, Bai J, Wang C, Wang R (2022) A survey of battery-supercapacitor hybrid energy storage systems: concept. Topol Control Appl Symm 14:1085. https://doi.org/10.3390/sym14061085

    Article  CAS  Google Scholar 

  2. Zhao Y, Fangzhou Lu, Fan C, Yang J (2022) A novel axial-flux dual-stator toothless permanent magnet machine for flywheel energy storage. Symmetry 14:61. https://doi.org/10.3390/sym14010061

    Article  Google Scholar 

  3. Zhang H, Dou H, Ren J, Li J, Zhang H (2009) Research on the application of superconducting magnetic energy storage in wind/photovoltaic generation system. In: Proceedings of the International Conference on Power Electronics and Drive Systems (PEDS), Taipei, Taiwan, 2–5 Nov 2009

  4. Gil-González W, Martin Serra F, Montoya OD, Ramírez CA, Orozco-Henao C (2020) Direct power compensation in AC distribution networks with SCES Systems via PI-PBC approach. Symmetry 12(4):666. https://doi.org/10.3390/sym12040666

    Article  Google Scholar 

  5. Sun B, Tian S, He J, Liu L, Wang Z, Guo J, Xu F, Cheng T, Li J (2020) Review on pumped storage power station in high proportion renewable energy power system. In: Proceedings of the IEEE Conference on Electrical Machines and Systems (SCEMS), Jinan, China, 4–6 Dec 2020

  6. Guo HL, Sun H, Jiang ZL, Luo CS, Gao MY, Wei MH et al (2019) A new type of composite electrolyte with high performance for room-temperature solid-state lithium battery. J Mater Sci 54:4874–4883. https://doi.org/10.1007/s10853-018-03188-8

    Article  CAS  Google Scholar 

  7. Priya CN, Muthuvinayagam M (2023) Environmental friendly solid blend polymer electrolytes based on PVA: starch: ceric ammonium nitrate for electric double layer capacitor (EDLC) applications. J Mater Sci 58:773–786. https://doi.org/10.1007/s10853-022-08098-4

    Article  CAS  Google Scholar 

  8. Wang JA, Lu YT, Lin SC, Wang YS, Ma CCM, Hu CC (2018) Designing a novel polymer electrolyte for improving the electrode/electrolyte interface in flexible all-solid-state electrical double-layer capacitors. ACS Appl Mater Interfaces 10:17871–17882

    Article  CAS  Google Scholar 

  9. Lobato-Peralta DR, Amaro R, Arias DM, Cuentas-Gallegos AK, Jaramillo-Quintero OA, Sebastian PJ, Okoye PU (2021) Activated carbon from wasp hive for aqueous electrolyte supercapacitor application. J Electroanal Chem 901:115777

    Article  CAS  Google Scholar 

  10. Arkhipova EA, Novotortsev RY, Ivanov AS, Maslakov KI, Savilov SV (2022) Rice husk-derived activated carbon electrode in redox-active electrolyte–New approach for enhancing supercapacitor performance. J Energy Storage 55:105699

    Article  Google Scholar 

  11. Ortiz-Olivares RD, Lobato-Peralta DR, Arias DM, Okolie JA, Cuentas-Gallegos AK, Sebastian PJ, Okoye PU (2022) Production of nanoarchitectonics corncob activated carbon as electrode material for enhanced supercapacitor performance. J Energy Storage 55:105447

    Article  Google Scholar 

  12. Kamarudin KH, Hassan M, Isa MIN (2018) Lightweight and flexible solid-state EDLC based on optimized CMC-NH4NO3 solid bio-polymer electrolyte. ASM Sci J 11:29–36

    Google Scholar 

  13. Wang H, Lin J, Shen ZX (2016) Polyaniline (PANi) based electrode materials for energy storage and conversion. J Sci Adv Mater Devices 1:225–255

    Article  Google Scholar 

  14. Minakshi M, Mitchell DRG, Jones RT, Pramanik NC, Jean-Fulcrand A, Garnweitner G (2020) A hybrid electrochemical energy storage device using sustainable electrode materials. Chem Sel 5:1597–1606

    CAS  Google Scholar 

  15. Haque F, Fan C (2022) Prospect of microplastic pollution control under the “New normal” concept beyond COVID-19 pandemic. J Clean Prod 367:133027

    Article  CAS  Google Scholar 

  16. Abdulwahid RT, Aziz SB, Kadir MFZ, Sadiq NM, Halim NA, Hamsan MH et al (2022) Biodegradable polymer membrane K + ion conductor for electrochemical device application. J Mater Sci. https://doi.org/10.1007/s10853-022-07825-1

    Article  Google Scholar 

  17. Souza AG, Ferreira RR, Paula LC, Mitra SK, Rosa DS (2021) Starch-based films enriched with nanocellulose-stabilized pickering emulsions containing different essential oils for possible applications in food packaging. Food Packag Shelf Life 27:100615

    Article  CAS  Google Scholar 

  18. Roy S, Rhim J-W (2022) Starch/agar-based functional films integrated with enoki mushroom-mediated silver nanoparticles for active packaging applications. Food Biosci 49:101867

    Article  CAS  Google Scholar 

  19. Koliyoor J, Hegde S, Sanjeev G, Murari MS (2023) An insight into the suitability of magnesium ion-conducting biodegradable methyl cellulose solid polymer electrolyte film in energy storage devices. J Mater Sci 58(12):5389–5412. https://doi.org/10.1007/s10853-023-08355-0

    Article  CAS  Google Scholar 

  20. Hadidi M, Jafarzadeh S, Forough M, Garavand F, Alizadeh S, Salehabadi A, Khaneghah AM, Jafari SM (2022) Plant protein based food packaging films; recent advances in fabrication, characterization, and applications. Trends Food Sci Technol 120:154–173

    Article  CAS  Google Scholar 

  21. Lin S, Wang F, Shao Z (2021) Biomass applied in supercapacitor energy storage devices. J Mater Sci 56:1943–1979. https://doi.org/10.1007/s10853-020-05356-1

    Article  CAS  Google Scholar 

  22. Doyan A, Susilawati S, Prayogi S, Bilad MR, Arif MF, Ismail NM (2021) Polymer film blend of polyvinyl alcohol, trichloroethylene and cresol red for gamma radiation dosimetry. Polymers 13(11):1866

    Article  CAS  Google Scholar 

  23. Togo A, Enomoto Y, Takemura A, Iwata T (2019) Synthesis and characterization of dextran ester derivatives and their adhesive properties. J Wood Sci 65(1):1–8

    Article  Google Scholar 

  24. Lewandowska K, Szulc M (2022) Rheological and film-forming properties of chitosan composites. Int J Mol Sci 23(15):8763

    Article  CAS  Google Scholar 

  25. Zhang H, Kong M, Jiang Q (2021) Chitosan membranes from acetic acid and imidazolium ionic liquids: effect of imidazolium structure on membrane properties. J Mol Liq 340:117209

    Article  CAS  Google Scholar 

  26. Díaz-Montes E, Yáñez-Fernández J, Castro-Muñoz R (2021) Dextran/chitosan blend film fabrication for bio-packaging of mushrooms (Agaricus bisporus). J Food Process Preserv 45(6):e15489

    Article  Google Scholar 

  27. Chaiyasan W, Srinivas SP, Tiyaboonchai W (2015) Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery. Mol Vis 21:1224–1234

    CAS  Google Scholar 

  28. Hadi JM, Aziz SB, Kadir MFZ, El-Badry YA, Ahamad T, Hussein EE, Alshehri SM (2021) Design of plasticized proton conducting Chitosan: Dextran based biopolymer blend electrolytes for EDLC application: Structural, impedance and electrochemical studies. Arab J Chem 14(11):103394

    Article  CAS  Google Scholar 

  29. Abdulwahid RT, Aziz SB, Kadir MFZ (2023) Replacing synthetic polymer electrolytes in energy storage with flexible biodegradable alternatives : sustainable green biopolymer blend electrolyte for supercapacitor device. Mater Today Sustain 23:100472. https://doi.org/10.1016/j.mtsust.2023.100472

    Article  Google Scholar 

  30. Gandolfo M, Amici J, Fagiolari L, Francia C, Bodoardo S, Bella F (2022) Designing photocured macromolecular matrices for stable potassium batteries. Sustain Mater Technol 34:e00504. https://doi.org/10.1016/j.susmat.2022.e00504

    Article  CAS  Google Scholar 

  31. Elizalde F, Amici J, Trano S, Vozzolo G, Aguirresarobe R, Versaci D et al (2022) Self-healable dynamic poly(urea-urethane) gel electrolyte for lithium batteries. J Mater Chem A 10:12588–12596. https://doi.org/10.1039/d2ta02239g

    Article  CAS  Google Scholar 

  32. Siccardi S, Amici J, Colombi S, Carvalho JT, Versaci D, Quartarone E et al (2022) UV-cured self-healing gel polymer electrolyte toward safer room temperature lithium metal batteries. Electrochim Acta 433:141265. https://doi.org/10.1016/j.electacta.2022.141265

    Article  CAS  Google Scholar 

  33. Madani S, Falamaki C, Alimadadi H, Aboutalebi SH (2019) Binder-free reduced graphene oxide 3D structures based on ultra large graphene oxide sheets: High performance green micro-supercapacitor using NaCl electrolyte. J Energy Storage 21:310–320. https://doi.org/10.1016/j.est.2018.12.003

    Article  Google Scholar 

  34. Trano S, Corsini F, Pascuzzi G, Giove E, Fagiolari L, Amici J et al (2022) Lignin as polymer electrolyte precursor for stable and sustainable potassium batteries. Chemsuschem 15:e202200294. https://doi.org/10.1002/cssc.202200294

    Article  CAS  Google Scholar 

  35. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682

    Article  CAS  Google Scholar 

  36. Aral H, Vecchio-Sadus A (2019) Lithium: environmental pollution and health effects, 2nd edn. Elsevier, New Jeresy

    Google Scholar 

  37. Aziz SB, Karim WO, Brza MA, Abdulwahid RT, Saeed SR, Al-Zangana S et al (2019) Ion transport study in CS: POZ based polymer membrane electrolytes using Trukhan model. Int J Mol Sci. https://doi.org/10.3390/ijms20215265

    Article  Google Scholar 

  38. Rajendran S, Shanker Babu R, Sivakumar P (2008) Investigations on PVC/PAN composite polymer electrolytes. J Membr Sci 315:67–73

    Article  CAS  Google Scholar 

  39. Hadi JM, Aziz SB, Nofal MM, Hussen SA, Hamsan MH, Brza MA et al (2020) Electrical, dielectric property and electrochemical performances of plasticized silver ion-conducting chitosan-based polymer nanocomposites. Membranes (Basel) 10:151. https://doi.org/10.3390/membranes10070151

    Article  CAS  Google Scholar 

  40. Das-Gupta DK (2001) Molecular processes in polymer electrets. J Electrostat 51:159–166

    Article  Google Scholar 

  41. Aziz SB, Hamsan MH, Brza MA, Kadir MFZ, Muzakir SK, Abdulwahid RT (2020) Effect of glycerol on EDLC characteristics of chitosan: methylcellulose polymer blend electrolytes. J Mater Res Technol 9(4):8355–8366

    Article  CAS  Google Scholar 

  42. Jacob MME, Prabaharan SRS, Radhakrishna S (1997) Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes. Solid State Ion 104(3–4):267–276

    Article  CAS  Google Scholar 

  43. Fonseca CP, Cavalcante F Jr, Amaral FA, Souza CAZ, Neves S (2007) Thermal and conduction properties of a PCL-biodegradable gel polymer electrolyte with LiClO4, LiF3CSO3, and LiBF4 salts. Int J Electrochem Sci 2:52–63

    Article  CAS  Google Scholar 

  44. Aziz SB (2016) Occurrence of electrical percolation threshold and observation of phase transition in chitosan (1–x): AgI x (0.05≤ x≤ 0.2)-based ion-conducting solid polymer composites. Appl Phys A 122(7):1–13

    Article  Google Scholar 

  45. Marzantowicz M, Dygas JR, Krok F (2008) Impedance of interface between PEO: LiTFSI polymer electrolyte and blocking electrodes. Electrochim Acta 53(25):7417–7425

    Article  CAS  Google Scholar 

  46. Yang J, Meng XJ, Shen MR, Fang L, Wang JL, Lin T, Chu JH (2008) Hopping conduction and low-frequency dielectric relaxation in 5mol% Mn doped (Pb, Sr) TiO3 films. J Appl Phys. https://doi.org/10.1063/1.3021447

    Article  Google Scholar 

  47. Migahed MD, Ishra M, Fahmy T, Barakat A (2004) Electric modulus and AC conductivity studies in conducting PPy composite films at low temperature. J Phys Chem Solids 65(6):1121–1125. https://doi.org/10.1016/j.jpcs.2003.11.039

    Article  CAS  Google Scholar 

  48. Bhadra S, Singha NK, Khastgir D (2009) Dielectric properties and EMI shielding efficiency of polyaniline and ethylene 1-octene based semi-conducting composites. Curr Appl Phys 9(2):396–403. https://doi.org/10.1016/j.cap.2008.03.009

    Article  Google Scholar 

  49. Mishra R, Baskaran N, Ramakrishnan PA, Rao KJ (1998) Lithium ion conduction in extreme polymer in salt regime. Solid State Ion 112(3–4):261–273

    Article  CAS  Google Scholar 

  50. Abdulwahid RT, Aziz SB, Kadir MFZ (2022) Design of proton conducting solid biopolymer blend electrolytes based on chitosan-potato starch biopolymers : deep approaches to structural and ion relaxation dynamics of H + ion. J Appl Polym Sci 139:e52892. https://doi.org/10.1002/app.52892

    Article  CAS  Google Scholar 

  51. Yahya MZA, Arof AK (2004) Conductivity and X-ray photoelectron studies on lithium acetate doped chitosan films. Carbohydr Polym 55:95–100

    Article  CAS  Google Scholar 

  52. Kamarulzaman N, Osman Z, Muhamad MR, Ibrahim ZA (2001) Performance characteristics of LiMn2O4 /polymer/carbon electrochemical cells. J Power Sour 97–98:722–725

    Article  Google Scholar 

  53. Harun NI, Ali RM, Ali AMM, Yahya MZA (2011) Conductivity studies on cellulose acetate-tetrafluoroborate based polymer electrolytes. Mater Res Innov 15:39–42

    Article  Google Scholar 

  54. Lopes LVS, Dragunski DC, Pawlicka A, Donoso JP (2003) Nuclear magnetic resonance and conductivity study of starch based polymer electrolytes. Electrochim Acta 48:2021–2027

    Article  CAS  Google Scholar 

  55. Chatterjee B, Kulshrestha N, Gupta PN (2015) Electrical properties of starch-PVA biodegradable polymer blend. Phys Scr 90:1–9

    Article  Google Scholar 

  56. Shukur MF, Ithnin R, Kadir MFZ (2014) Electrical properties of proton conducting solid biopolymer electrolytes based on starch-chitosan blend. Ionics 20:977–999

    Article  CAS  Google Scholar 

  57. Woo HJ, Majid SR, Arof AK (2012) Dielectric properties and morphology of polymer electrolyte based on poly(ɛ-caprolactone) and ammonium thiocyanate. Mater Chem Phys 134:755–761. https://doi.org/10.1016/j.matchemphys.2012.03.064

    Article  CAS  Google Scholar 

  58. Aziz SB, Abidin ZHZ (2015) Ion-transport study in nanocomposite solid polymer electrolytes based on chitosan: electrical and dielectric analysis. J Appl Polym Sci. https://doi.org/10.1002/app.41774

    Article  Google Scholar 

  59. Aziz SB (2013) Li+ ion conduction mechanism in poly (ε-caprolactone)-based polymer electrolyte. Iran Polym J 22(12):877–883

    Article  CAS  Google Scholar 

  60. Abdullah A, Abdullah SZ, Ali AMM, Winie T, Yahya MZA, Subban RHY (2009) Electrical properties of PEO-LiCF3SO3-SiO2 nanocomposite polymer electrolytes. Mater Res Innov 13:255

    Article  CAS  Google Scholar 

  61. Shukur MF, Ithnin R, Kadir MFZ (2014) Electrical characterization of corn starch-LiOAc electrolytes and application in electrochemical double layer capacitor. Electrochim Acta 136:204–216. https://doi.org/10.1016/j.electacta.2014.05.075

    Article  CAS  Google Scholar 

  62. Aziz SB, Abdullah RM (2018) Crystalline and amorphous phase identification from the tanδ relaxation peaks and impedance plots in polymer blend electrolytes based on [CS: AgNt] x: PEO (x–1)(10≤ x≤ 50). Electrochim Acta 285:30–46

    Article  CAS  Google Scholar 

  63. Selvasekarapandian S, Chithra DR (1999) Dielectric studies on a solid electrolyte AgI-PbBr 2-Ag2O-B2O3. Mater Chem Phys 58:90–93. https://doi.org/10.1016/S0254-0584(98)00256-9

    Article  CAS  Google Scholar 

  64. Brza MA, Aziz SB, Anuar H, Ali F (2020) Structural, ion transport parameter and electrochemical properties of plasticized polymer composite electrolyte based on PVA: a novel approach to fabricate high performance EDLC devices. Polym Test 91:106813

    Article  CAS  Google Scholar 

  65. Eschen T, Kösters J, Schönhoff M, Stolwijk NA (2012) Ionic Transport in polymer electrolytes based on PEO and the PMImIIonic liquid: effects of salt concentration and iodine addition. J Phys Chem B 116:8290–8298

    Article  CAS  Google Scholar 

  66. Maurya KK, Hashmi SA, Chandra S, Chowdari BVR, Chandra S, Singh S, Srivastava PC (1992) Solid state ionics: materials and applications. World Scientific, Singapore, pp 573–577

    Google Scholar 

  67. Winie T, Ramesh S, Arof AK (2009) Studies on the structure and transport properties of hexanoyl chitosan-based polymer electrolytes. Phys B 404:4308–4311

    Article  CAS  Google Scholar 

  68. Singh R, Singh PK, Singh V, Bhattacharya B (2019) Quantitative analysis of ion transport mechanism in biopolymer electrolyte. Opt Laser Technol 113:303–309

    Article  CAS  Google Scholar 

  69. Chandra A, Agrawal RC, Mahipal YK (2009) Ion transport property studies on PEO–PVP blended solid polymer electrolyte membranes. J Phys D Appl Phys 42(13):135107

    Article  Google Scholar 

  70. Aziz SB (2018) The Mixed contribution of ionic and electronic carriers to conductivity in chitosan based solid electrolytes mediated by CuNt salt. J Inorg Organomet Polym 28:1942–1952. https://doi.org/10.1007/s10904-018-0862-3

    Article  CAS  Google Scholar 

  71. Ramya CS, Selvasekarapandian S, Hirankumar G, Savitha T, Angelo PC (2008) Investigation on dielectric relaxations of PVP–NH4SCN polymer electrolyte. J Non-Cryst Solids 354:1494–1502

    Article  CAS  Google Scholar 

  72. Mohamed AS, Asnawi ASFM, Shukur MF, Matmin J, Kadir MFZ, Yusof YM (2022) The Development of chitosan-maltodextrin polymer electrolyte with the addition of ionic liquid for electrochemical double layer capacitor (EDLC) application. Int J Electrochem Sci 17:22034. https://doi.org/10.20964/2022.03.3

    Article  CAS  Google Scholar 

  73. Teo LP, Buraidah MH, Arof AK (2021) Development on solid polymer electrolytes for electrochemical devices. Molecules 26(21):6499

    Article  CAS  Google Scholar 

  74. Ibrahim S, Ahmad A, Mohamed NS (2015) Characterization of novel castor oil-based polyurethane polymer electrolytes. Polymers 7(4):747–759

    Article  CAS  Google Scholar 

  75. Irfan M, Manjunath A, Mahesh SS, Somashekar R, Demappa T (2021) Influence of NaF salt doping on electrical and optical properties of PVA/PVP polymer blend electrolyte films for battery application. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-021-05274-1

    Article  Google Scholar 

  76. MohdRafi NS, Abidin SZZ, Majid SR, Zakaria R (2022) Preparation of agarose-based biopolymer electrolytes containing calcium thiocyanate: electrical and electrochemical properties. Int J Electrochem Sci 17:220713

    Article  Google Scholar 

  77. Aziz SB, Brevik I, Hamsan MH, Brza MA, Nofal M, Abdullah AM, Rostam S, Al-Zangana S, Muzakir SK, Kadir MF (2020) Compatible solid polymer electrolyte based on methyl cellulose for energy storage application: structural, electrical, and electrochemical properties. Polymers 12(10):2257

    Article  CAS  Google Scholar 

  78. Vahinia M, Muthuvinayagama M, Isa MIN (2019) Preparation and Characterization of Biopolymer Electrolytes Based on Pectin and NaNO3 for Battery Applications. Polym Sci Ser A 61(6):823–831

    Article  Google Scholar 

  79. Muchakayala R, Song S, Wang J, Fan Y, Bengeppagari M, Chen J, Tan M (2018) Development and supercapacitor application of ionic liquid-incorporated gel polymer electrolyte films. J Ind Eng Chem 59:79–89

    Article  CAS  Google Scholar 

  80. Pal B, Yang S, Ramesh S, Thangadurai V, Jose R (2019) Electrolyte selection for supercapacitive devices a critical review. Nanoscale Adv 1:3807

    Article  Google Scholar 

  81. Anăstăsoaie V, Matica OT, Lete C, Isopescu R, Miskovic-Stankovic V, Ungureanu EM (2023) Electrochemical studies of azulene modified electrodes. Symmetry 15(2):514. https://doi.org/10.3390/sym15020514

    Article  CAS  Google Scholar 

  82. Liew C-W, Ramesh S, Arof AK (2015) Characterization of ionic liquid added poly(vinyl alcohol)-based proton conducting polymer electrolytes and electrochemical studies on the supercapacitors. Int J Hydrog Energy 40:852–862

    Article  CAS  Google Scholar 

  83. Pandey GP, Yogesh K, Hashmi SA (2011) Ionic liquid incorporated PEO based polymer electrolyte for electrical double layer capacitors: a comparative study with lithium and magnesium systems. Solid State Ion 190:93–98

    Article  CAS  Google Scholar 

  84. Shukur MF (2015) Characterization of Ion conducting solid biopolymer electrolytes based on starch-chitosan blend and application in electrochemical devices. Ph.D. Thesis, University of Malaya, Kuala Lumpur, Malaysia

  85. Aziz SB, Hamsan MH, Brza MA, Kadir MFZ, Abdulwahid RT, Ghareeb HO, Woo HJ (2019) Fabrication of energy storage EDLC device based on CS: PEO polymer blend electrolytes with high Li+ ion transference number. Results Phys 15:102584

    Article  Google Scholar 

  86. Shukur MF, Hamsan MH, Kadir MFZ (2019) Investigation of plasticized ionic conductor based on chitosan and ammonium bromide for EDLC application. Mater Today Proc 17:490–498

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely express our thanks to University of Sulaimani, University of Malaya, Charmo University, Universiti Pertahanan Nasional Malaysia, University of Cihan Sulaimaniya and Princess Nourah bint Abdulrahman University for financial support and providing facilities. The authors express their gratitude to the support of Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R58), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm their contribution to the paper as follows: SBA: Conceptualization and design of the present idea, investigated and supervised the findings of this work, approved the final manuscript. AAA carried out experimental work. MHH, MAB and RTA performed the analytic calculations and interpretation of results and were involved in manuscript preparation. NAH, MFZK, DMA and SIA contributed to conceptualization and helped in validation and reviewed the manuscript. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Shujahadeen B. Aziz.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamsan, M.H., Aziz, S.B., Abdulwahid, R.T. et al. Plasticized green electrolyte and table salt for energy storage applications. J Mater Sci 58, 14121–14139 (2023). https://doi.org/10.1007/s10853-023-08895-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08895-5

Navigation