Skip to main content
Log in

Increased ductility of Ni-based metallic glass ribbon pre-annealed at β-relaxation temperature

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The lack of ductility is known to be a major drawback in the mechanical properties of amorphous alloys. A temperature impact is often used, as a factor to improve the mechanical parameters of these thermally unstable materials. A thick Ni82.1Cr7.8Si4.6Fe3.1Mn0.2Al0.1Cu0.1B2 metallic glass ribbon was subjected to a series of one-hour anneals between 50 and 700 °C. Annealing at 250 °C revealed an increase in the density of the ribbon accompanied by structure rearrangement responsible for the β-relaxation process. In addition, the metallic glass demonstrated high ductility along with high tensile strength and hardness under load. Based on the analysis of transformation of excess free volume in the vicinity of the β-relaxation temperature, a mechanism explaining the attainment of ductility maximum realized in metallic glass under loading has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

All experimental data are available upon request.

References

  1. Ghidelli M, Orekhov A, Bassi AL, Terraneo G, Djemia P, Abadias G, Nord M, Béché A, Gauquelin N, Verbeeck J, Raskin JP, Schryvers D, Pardoen T, Idrissi H (2021) Novel class of nanostructured metallic glass films with superior and tunable mechanical properties. Acta Mater 213:116955

    Article  CAS  Google Scholar 

  2. Wang Q, Yang Y, Jiang H, Liu CT, Ruan HH, Lu J (2014) Superior tensile ductility in bulk metallic glass with gradient amorphous structure. Sci Rep 4:4757

    Article  CAS  Google Scholar 

  3. Xu T, Pang S, Li H, Zhang T (2015) Corrosion resistant Cr-based bulk metallic glasses with high strength and hardness. J Non-Cryst Solids 410:20–25

    Article  CAS  Google Scholar 

  4. Liu CT, Heatherly L, Easton DS, Carmichael CA, Schneibel JH, Chen CH, Wright JL, Yoo MH, Horton JA, Inoue A (1998) A Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 29:1811–1820

    Article  Google Scholar 

  5. Liu X, Kong J, Song X, Feng S, Zhang Z, Yang Y, Wang T (2021) Free volume evolution dominated by glass forming ability determining mechanical performance in ZrxTi65-xBe27.5Cu7.5 metallic glasses. Mater Sci Eng A 804:140764

    Article  CAS  Google Scholar 

  6. Murali P, Ramamurty U (2005) Embrittlement of a bulk metallic glass due to sub-Tg annealing. Acta Mater 53:1467–1478

    Article  CAS  Google Scholar 

  7. Sarac B (2021) Influence of sub-glass transition heat-treatment on physical and structural properties of Cu46Zr44Al8Hf2 metallic glass. Res Eng Struct Mat 7(1):121–134

    Google Scholar 

  8. Butenko PN, Hilarov VL, Obidov BA (2022) Crystallization of Ni50Ti50 metallic glass ribbon in the concept of multifractal formalism. Phase Transit. 95(7):537–550

    Article  CAS  Google Scholar 

  9. Zhang K, Gao X, Dong Y, Xing Q, Wang Y (2015) Effect of annealing on the microstructure, microhardness, and corrosion resistance of Ni62Nb33Zr5 metallic glass and its composites. J Non-Cryst Solids 425:46–51

    Article  CAS  Google Scholar 

  10. Okulov I, Soldatov I, Kaban I, Sarac B, Spieckermann F, Eckert J (2020) Fabrication of metastable crystalline nanocomposites by flash annealing of Cu47.5Zr47.5Al5 metallic glass using Joule heating. Nanomaterials 10:84

    Article  CAS  Google Scholar 

  11. Hasani S, Jaafari Z, Seifoddini A, Rezaei-Shahreza P (2021) Nucleation and growth of nano-crystallites in a new multicomponent Fe-based BMG during the partial crystallization process. J Therm Anal Calorim 145:109–118

    Article  CAS  Google Scholar 

  12. Okulov IV, Soldatov IV, Sarmanova MF, Kaban I, Gemming T, Edström K, Eckert J (2015) Flash Joule heating for ductilization of metallic glasses. Nat Commun 6:7932

    Article  CAS  Google Scholar 

  13. Chen Z, Datye A, Ketkaew J, Sohn S, Zhou C, Dagdeviren OE, Schroers J, Schwarz UD (2020) Relaxation and crystallization studied by observing the surface morphology evolution of atomically flat Pt57.5Cu14.7Ni5.3P22.5 upon annealing. Scr Mater 182:32–37

    Article  CAS  Google Scholar 

  14. Yoo BG, Park KW, Lee JC, Ramamurty U, Jang JI (2009) Role of free volume in strain softening of as-cast and annealed bulk metallic glass. J Mater Res 24(4):1405–1416

    Article  CAS  Google Scholar 

  15. Turnbull D, Cohen MH (1961) Free-volume model of the amorphous phase: glass transition. J Chem Phys 34(1):120

    Article  CAS  Google Scholar 

  16. Spaepen F (1977) A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall 25(4):407–415

    Article  CAS  Google Scholar 

  17. Frenkel J (1946) Kinetic theory of liquids. Clarendon Press, Oxford, p 488

    Google Scholar 

  18. Hasani S, Rezaei-Shahreza P, Seifoddini A (2019) Effect of Cu presence on evolution of mechanical and magnetic properties in a novel Fe-based bulk metallic glass during partial annealing process. Metall Mater Trans A 50:63–71

    Article  CAS  Google Scholar 

  19. Brechtl J, Agarwal S, Crespillo ML, Yang T, Bei H, Zinkle SJ (2019) Evolution of the microstructural and mechanical properties of BAM-11 bulk metallic glass during ion irradiation and annealing. J Nucl Mater 523:299–309

    Article  CAS  Google Scholar 

  20. Rezaei-Shahreza P, Seifoddini A, Hasani S (2018) Microstructural and phase evolutions: their dependent mechanical and magnetic properties in a Fe-based amorphous alloy during annealing process. J Alloys Compd 738:197–205

    Article  CAS  Google Scholar 

  21. Poddar C, Ningshen S, Jayaraj J (2020) Corrosion assessment of Ni60Nb30Ta10 metallic glass and its partially crystallized alloy in concentrated nitric acid environment. J Alloy Compd 813:152172

    Article  CAS  Google Scholar 

  22. Hitit A, Şahin H, Öztürk P, Aşgın AM (2015) A new Ni-based metallic glass with high thermal stability and hardness. Metals 5:162–171

    Article  Google Scholar 

  23. Galimzyanov BN, Doronina MA, Mokshin AV (2021) Excellent glass former Ni62Nb38 crystallizing under combined shear and ultra-high pressure. J Non-Cryst Solids 572:121102

    Article  CAS  Google Scholar 

  24. Inoue A, Takeuchi A (2011) Recent development and application products of bulk glassy alloys. Acta Mater 59:2243–2267

    Article  CAS  Google Scholar 

  25. Li R, Li Z, Huang J, Zhang P, Zhu Y (2011) Effect of Ni-to-Fe ratio on structure and properties of Ni–Fe–B–Si–Nb coatings fabricated by laser processing. Appl Surf Sci 257:3554–3557

    Article  CAS  Google Scholar 

  26. Ishida M, Takeda H, Watanabe D, Amiya K, Nishiyama N, Kita K, Saotome Y, Inoue A (2004) Fillability and imprintability of high-strength Ni-based bulk metallic glass prepared by the precision die-casting technique. Mater Trans 45(4):1239–1244

    Article  CAS  Google Scholar 

  27. Conner RD, Dandliker RB, Johnson WL (1998) Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Met. 46(17):6089–6102

    Article  CAS  Google Scholar 

  28. Kündig AA, Ohnuma M, Ping DH, Ohkubo T, Hono K (2004) In situ formed two-phase metallic glass with surface fractal microstructure. Acta Mater 52(8):2441–2448

    Article  Google Scholar 

  29. He J, Jiang HX, Chen S, Zhao JZ, Zhao L (2011) Liquid phase separation in immiscible Ag–Ni–Nb alloy and formation of crystalline/amorphous composite. J Non-Cryst Solids 357(21):3561–3564

    Article  CAS  Google Scholar 

  30. Xi YY, He J, Sun XJ, Li W, Zhao JZ, Hao HR, Xiong T (2018) Ni-Based metallic glass composites containing Cu-rich crystalline nanospheres. Acta Metall Sin (Engl Lett) 31:1130–1136

    Article  CAS  Google Scholar 

  31. Budhani RC, Goel TC, Chopra KL (1982) Melt-spinning technique for preparation of metallic glasses. Bull Mater Sci 4(5):549–561

    Article  CAS  Google Scholar 

  32. Betekhtin VI, Kadomtsev AG, Larionova TV, Narykova MV (2015) Effect of thermobaric treatment on the nanoporosity and properties of amorphous alloys. Met Sci Heat Treat 56(9):555–558

    Article  CAS  Google Scholar 

  33. McSkimin HJ (1964). In: Mason WP (Ed.), Physical acoustics, Part A. Academic Press, New York, Vol. I, p 271

  34. Burenkov YA, Nikanorov SL, Stepanov AV (1971) Change of elastic constants of shaped crystals by electrostatic method. Izv.Akad.Nauk SSSR, Ser.Fiz. 35, 3: 525–528 (in Russian).

  35. Yu H, Wang WH, Bai HY, Samwer K (2014) The β-relaxation in metallic glasses. Natl Sci Rev 1(3):429–461

    Article  CAS  Google Scholar 

  36. Goldstein M (1969) Viscous liquids and the glass transition: a potential energy barrier picture. J Chem Phys 51:3728–3739

    Article  CAS  Google Scholar 

  37. Gao M, Perepezko JH (2020) Separating β relaxation from α relaxation in fragile metallic glasses based on ultrafast flash differential scanning calorimetry. Phys Rev Mater 4:025602

    Article  CAS  Google Scholar 

  38. Wang J, Kaban I, Levytskyi V, Li R, Han J, Stoica M, Gumeniuk R, Nielsch K (2021) Ultra-high strength Co–Ta–B bulk metallic glasses: Glass formation, thermal stability and crystallization. J Alloy Compd 860:158398

    Article  CAS  Google Scholar 

  39. Laskovski A (2011) Biomedical engineering, trends in materials science. InTech, London, p 564

    Book  Google Scholar 

  40. Jiang JZ, Saida J, Kato H, Inoue A (2003) Is Cu60Ti10Zr30 a bulk glass-forming alloy. Appl Phys Lett 82:4041–4042

    Article  CAS  Google Scholar 

  41. Joint Committee on Powder Diffraction Standards (JCPDS) card no. 04–0850

  42. Zhu ZW, Zhang HF, Sun WS, Hu ZQ (2007) Effect of Zr addition on the glass-forming ability and mechanical properties of Ni–Nb alloy. J Mater Res 22(2):453–459

    Article  CAS  Google Scholar 

  43. Rycroft CH, Bouchbinder E (2012) Fracture toughness of metallic glasses: annealing-induced embrittlement. Phys Rev Lett 109:194301

    Article  Google Scholar 

  44. Li J, Spaepen F, Hufnagel TC (2002) Nanometre-scale defects in shear bands in a metallic glass. Philos Mag A 82(13):2623–2630

    Article  CAS  Google Scholar 

  45. Huang R, Suo Z, Prevost JH, Nix WD (2002) Inhomogeneous deformation in metallic glasses. J Mech Phys Solids 50:1011–1027

    Article  Google Scholar 

  46. Leamy HJ, Chen HS, Wang TT (1972) Plastic flow and fracture of metallic glass. Metall Trans 3:699–708

    Article  CAS  Google Scholar 

  47. Lewandowski JJ, Greer AL (2006) Temperature rise at shear bands in metallic glasses. Nat Mater 5:15–18

    Article  CAS  Google Scholar 

  48. Chen CS, Yiu P, Li CL, Chu JP, Shek CH, Hsueh CH (2014) Effects of annealing on mechanical behavior of Zr–Ti–Ni thin film metallic glasses. Mater Sci Eng A 608:258–264

    Article  CAS  Google Scholar 

  49. Gu J, Song M, Ni S, Guo SF, He YH (2013) Effects of annealing on the hardness and elastic modulus of a Cu36Zr48Al8Ag8 bulk metallic glass. Mater Des 47:706–710

    Article  CAS  Google Scholar 

  50. Xing LQ, Bertrand C, Dallas JP, Cornet M (1998) Nanocrystal evolution in bulk amorphous Zr57Cu20Al10Ni8Ti5 alloy and its mechanical properties. Mater Sci Eng A 241:216–225

    Article  Google Scholar 

  51. Wang X, Gong P, Deng L, Jin J, Wang S, Li F (2017) Sub-Tg annealing effect on the kinetics of glass transition and crystallization for a Ti-Zr-Be-Fe bulk metallic glass. J Non-Cryst Solids 473:132–140

    Article  CAS  Google Scholar 

  52. Frechen Th, Dietz G (1984) Elastic properties and structural relaxation of amorphous Co-P and Fe-P alloys. J Phys F Met Phys 14:1811–1826

    Article  CAS  Google Scholar 

  53. Dietz G, Hüller K, Jung K (1983) Isothermal changes of volume and Young’s modulus of amorphous Co-P. J Non-cryst Solids 57(2):265–273

    Article  CAS  Google Scholar 

  54. Yu HB, Shen X, Wang Z, Gu L, Wang WH, Bai HY (2012) Tensile plasticity in metallic glasses with pronounced β relaxations. Phys Rev Lett 108:015504

    Article  CAS  Google Scholar 

  55. Falk ML, Langer JS (1998) Dynamics of viscoplastic deformation in amorphous solids. Phys Rev E 57:7192–7205

    Article  CAS  Google Scholar 

  56. Yuea X, Inoueb A, Liud CT, Fan C (2017) the development of structure model in metallic glasses. Mater Res 20(2):326–338

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

PNB—conception, manuscript composition, experimental design; VIB—conception; AGK—conception; MVN—manuscript composition; experimental design BAO—carrying out measurements; AVC—carrying out measurements.

Corresponding author

Correspondence to P. N. Butenko.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butenko, P.N., Betekhtin, V.I., Kadomtsev, A.G. et al. Increased ductility of Ni-based metallic glass ribbon pre-annealed at β-relaxation temperature. J Mater Sci 58, 13223–13235 (2023). https://doi.org/10.1007/s10853-023-08834-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08834-4

Navigation