Skip to main content
Log in

Strong work hardening in a high niobium-containing TiNi-based bulk glassy alloy composite

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, a high niobium-containing bulk glassy alloy composite Ti41Ni39Nb17.5Al2.5 consisting of amorphous, B2-TiNi and β-Nb phases was fabricated through in situ precipitation strategy by utilizing copper-mold suction casting. Upon compressive loading, the composite alloy showed a pronounced average plastic strain of (17.6 ± 3.5)% and a high fracture strength of (2279 ± 33) MPa together with a strong work-hardening deformation behavior. The volume fraction of the amorphous phase in the composite was determined to be around 23 vol%. The work softening caused by the formation of shear bands can be compensated by the work hardening arising from the pile-ups of dislocation and severe lattice distortion in the precipitated crystals and thereby stabilize the plastic deformation of the composite material. The findings imply that the room-temperature mechanical properties of bulk glassy alloy composites can be well tailored by selecting suitable reinforcers.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067–4109 (2007)

    Article  CAS  Google Scholar 

  2. A. Inoue, A. Takeuchi, Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243–2267 (2011)

    Article  CAS  Google Scholar 

  3. B.A. Sun, W.H. Wang, The fracture of bulk metallic glasses. Prog. Mater. Sci. 74, 211–307 (2015)

    Article  CAS  Google Scholar 

  4. R.T. Qu, D. Tönnies, L. Tian, Z.Q. Liu, Z.F. Zhang, C.A. Volkert, Size-dependent failure of the strongest bulk metallic glass. Acta Mater. 178, 249–262 (2019)

    Article  CAS  Google Scholar 

  5. H.X. Li, Z.C. Lu, S.L. Wang, Y. Wu, Z.P. Lu, Fe-based bulk metallic glasses: glass formation, fabrication, properties and applications. Prog. Mater. Sci. 103, 235–318 (2019)

    Article  CAS  Google Scholar 

  6. J. Zhou, Y. Wu, S.H. Jiang, W.L. Song, H.L. Huang, H.H. Mao, H. Wang, X.J. Liu, X.Z. Wang, Z.P. Lu, Simultaneously enhancing the strength and plasticity of Ti-based bulk metallic glass composites via microalloying with Ta. Mater. Res. Lett. 8, 23–30 (2020)

    Article  CAS  Google Scholar 

  7. Q.Y. Zhu, Z. Wang, H.J. Yang, J.W. Qiao, L. Jia, Y.C. Wu, Hardening overwhelming softening in Ti-based metallic glass composites upon cold rolling. Intermetallics 130, 107066 (2021)

    Article  CAS  Google Scholar 

  8. S.F. Guo, L. Liu, N. Li, Y. Li, Fe-based bulk metallic glass matrix composite with large plasticity. Scripta Mater. 62, 329–332 (2010)

    Article  CAS  Google Scholar 

  9. D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, W.L. Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085–1090 (2008)

    Article  CAS  Google Scholar 

  10. D.C. Hofmann, J.Y. Suh, A. Wiest, M.L. Lind, M.D. Demetriou, W.L. Johnson, Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility. Proc. Natl. Acad. Sci. USA 105, 20136–20140 (2008)

    Article  CAS  Google Scholar 

  11. Z.K. Li, H.M. Fu, P.F. Sha, Z.W. Zhu, A.M. Wang, H. Li, H.W. Zhang, H.F. Zhang, Z.Q. Hu, Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites. Sci. Rep. 5, 8967 (2015)

    Article  CAS  Google Scholar 

  12. Z. Zhu, H. Zhang, Z. Hu, W. Zhang, A. Inoue, Ta-particulate reinforced Zr-based bulk metallic glass matrix composite with tensile plasticity. Scripta Mater. 62, 278–281 (2010)

    Article  CAS  Google Scholar 

  13. Y. Wu, Y.H. Xiao, G.L. Chen, C.T. Liu, Z.P. Lu, Bulk metallic glass composites with transformation-mediated work-hardening and ductility. Adv. Mater. 22, 2770–2773 (2010)

    Article  CAS  Google Scholar 

  14. K.K. Song, S. Pauly, Y. Zhang, R. Li, S. Gorantla, N. Narayanan, U. Kühn, T. Gemming, J. Eckert, Triple yielding and deformation mechanisms in metastable Cu47.5Zr47.5Al5 composites. Acta Mater. 60, 6000–6012 (2012)

    Article  CAS  Google Scholar 

  15. P. Gargarella, S. Pauly, K.K. Song, J. Hu, N.S. Barekar, M. Samadi Khoshkhoo, A. Teresiak, H. Wendrock, U. Kühn, C. Ruffing, E. Kerscher, J. Eckert, Ti–Cu–Ni shape memory bulk metallic glass composites. Acta Mater. 61, 151–162 (2013)

    Article  CAS  Google Scholar 

  16. L.H. Qian, K.F. Li, F. Huang, D.D. Li, T.L. Wang, J.Y. Meng, F.C. Zhang, Enhancing both strength and ductility of low-alloy transformation-induced plasticity steel via hierarchical lamellar structure. Scripta Mater. 183, 96–101 (2020)

    Article  CAS  Google Scholar 

  17. F.F. Wu, K.C. Chan, S.H. Chen, S.S. Jiang, G. Wang, ZrCu-based bulk metallic glass composites with large strain-hardening capability. Mater. Sci. Eng. A 636, 502–506 (2015)

    Article  CAS  Google Scholar 

  18. J. Xu, L.L. Ma, Y.F. Xue, Z.H. Nie, Y.H. Long, L. Wang, Y.B. Deng, Work-hardening behavior, strain rate sensitivity, and failure behavior of in situ CuZr-based metallic glass matrix composite. J. Mater. Sci. 51, 5992–6001 (2016)

    Article  CAS  Google Scholar 

  19. S.H. Hong, J.T. Kim, H.J. Park, Y.S. Kim, J.Y. Suh, Y.S. Na, K.R. Lim, J.M. Park, K.B. Kim, Gradual martensitic transformation of B2 phase on TiCu-based bulk metallic glass composite during deformation. Intermetallics 75, 1–7 (2016)

    Article  CAS  Google Scholar 

  20. A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817–2829 (2005)

    Article  CAS  Google Scholar 

  21. Z.Z. Bao, S. Guo, F. Xiao, X.Q. Zhao, Development of NiTiNb in-situ composite with high damping capacity and high yield strength. Prog. Nat. Sci. Mater. Int. 21, 293–300 (2011)

    Article  Google Scholar 

  22. E.L. Semenova, Y.V. Kudryavtsev, Structure phase transformation and shape memory effect in ZrRh and ZrIr. J. Alloys Compds. 203, 165–168 (1994)

    Article  CAS  Google Scholar 

  23. J.H. Hollomon, Tensile deformation. Trans. Metall. Soc. AIME 162, 268–290 (1945)

    Google Scholar 

  24. Z.Y. Zhang, Y. Wu, J. Zhou, H. Wang, X.J. Liu, Z.P. Lu, Strong work-hardening in a Ti-based bulk metallic glass composite. Scripta Mater. 69, 73–76 (2013)

    Article  CAS  Google Scholar 

  25. J. Tan, F.S. Pan, Y. Zhang, B.A. Sun, J. He, N. Zheng, M. Stoica, U. Kühn, J. Eckert, Formation of Zr–Co–Al bulk metallic glasses with high strength and large plasticity. Intermetallics 31, 282–286 (2012)

    Article  CAS  Google Scholar 

  26. W. Zhou, J.Q. Hu, W.P. Weng, L.Y. Gao, G.Y. Xu, Enhancement of plasticity in Zr–Cu–Ni–Al–Ti bulk metallic glass by heterogeneous microstructure. J. Non-Cryst. Solids 481, 530–536 (2018)

    Article  CAS  Google Scholar 

  27. M.H. Lee, D.J. Sordelet, Evidence for adiabatic heating during fracture of W-reinforced metallic glass composites. Appl. Phys. Lett. 88, 261902–261904 (2006)

    Article  Google Scholar 

  28. B.A. Sun, J. Tan, S. Pauly, U. Kühn, J. Eckert, Stable fracture of a malleable Zr-based bulk metallic glass. J. Appl. Phys. 112, 103533–103538 (2012)

    Article  Google Scholar 

  29. L. Li, T. Ungar, Y.D. Wang, J.R. Morris, G. Tichy, J. Lendvai, Y.L. Yang, Y. Ren, H. Choo, P.K. Liaw, Microstructure evolution during cold rolling in a nanocrystalline Ni–Fe alloy determined by synchrotron X-ray diffraction. Acta Mater. 57, 4988–5000 (2009)

    Article  CAS  Google Scholar 

  30. F.F. Wu, K.C. Chan, S.T. Li, G. Wang, Stabilized shear banding of ZrCu-based metallic glass composites under tensile loading. J. Mater. Sci. 49, 2164–2170 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank M.R. Li, Z.Y. Zhang, Y. Ling, and H. Cheng for technical assistance and also are grateful to Prof. W.H. Li, Prof. G.S. Peng, and Dr Q. Hu for stimulating discussions. This work is financially supported by the Natural Science Foundation of Anhui Province (Grant No. 1908085ME147), International Cooperation and Exchanges in Anhui Provincial Key Project of Research (Grant No. 202004b11020010), and Natural Science Foundation of Anhui Provincial Education Department (Grant No. KJ2020A0262). The work is also partially supported by Natural Science Foundation of Jiangxi Province (Grant No. 20192BBH80020), State Key Laboratory of Advanced Metals and Materials in USTB (Grant No. 2019-Z01), and State Key Laboratory of Solidification Processing in NWPU (Grant No. SKLSP201919).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Zou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S.S., Yin, J., Zou, J.H. et al. Strong work hardening in a high niobium-containing TiNi-based bulk glassy alloy composite. Journal of Materials Research 36, 1367–1375 (2021). https://doi.org/10.1557/s43578-021-00199-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00199-1

Keywords

Navigation